Movatterモバイル変換


[0]ホーム

URL:


kpcaIG: Variables Interpretability with Kernel PCA

The kernelized version of principal component analysis (KPCA) has proven to be a valid nonlinear alternative for tackling the nonlinearity of biological sample spaces. However, it poses new challenges in terms of the interpretability of the original variables. 'kpcaIG' aims to provide a tool to select the most relevant variables based on the kernel PCA representation of the data as in Briscik et al. (2023) <doi:10.1186/s12859-023-05404-y>. It also includes functions for 2D and 3D visualization of the original variables (as arrows) into the kernel principal components axes, highlighting the contribution of the most important ones.

Version:1.0.1
Imports:grDevices,rgl,kernlab,ggplot2, stats,progress,viridis,WallomicsData, utils
Published:2025-03-28
DOI:10.32614/CRAN.package.kpcaIG
Author:Mitja Briscik [aut, cre], Mohamed Heimida [aut], Sébastien Déjean [aut]
Maintainer:Mitja Briscik <mitja.briscik at math.univ-toulouse.fr>
License:GPL-3
NeedsCompilation:no
CRAN checks:kpcaIG results

Documentation:

Reference manual:kpcaIG.html ,kpcaIG.pdf

Downloads:

Package source: kpcaIG_1.0.1.tar.gz
Windows binaries: r-devel:kpcaIG_1.0.1.zip, r-release:kpcaIG_1.0.1.zip, r-oldrel:kpcaIG_1.0.1.zip
macOS binaries: r-release (arm64):kpcaIG_1.0.1.tgz, r-oldrel (arm64):kpcaIG_1.0.1.tgz, r-release (x86_64):kpcaIG_1.0.1.tgz, r-oldrel (x86_64):kpcaIG_1.0.1.tgz
Old sources: kpcaIG archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=kpcaIGto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp