Movatterモバイル変換


[0]ホーム

URL:


enpls: Ensemble Partial Least Squares Regression

An algorithmic framework for measuring feature importance, outlier detection, model applicability domain evaluation, and ensemble predictive modeling with (sparse) partial least squares regressions.

Version:6.1.1
Depends:R (≥ 3.0.2)
Imports:pls,spls,foreach,doParallel,ggplot2,reshape2,plotly
Suggests:knitr,rmarkdown
Published:2025-07-29
DOI:10.32614/CRAN.package.enpls
Author:Nan XiaoORCID iD [aut, cre], Dong-Sheng Cao [aut], Miao-Zhu Li [aut], Qing-Song Xu [aut]
Maintainer:Nan Xiao <me at nanx.me>
BugReports:https://github.com/nanxstats/enpls/issues
License:GPL (≥ 3)
URL:https://nanx.me/enpls/,https://github.com/nanxstats/enpls
NeedsCompilation:no
Materials:README,NEWS
In views:AnomalyDetection,ChemPhys
CRAN checks:enpls results

Documentation:

Reference manual:enpls.html ,enpls.pdf
Vignettes:A Brief Introduction to enpls (source,R code)

Downloads:

Package source: enpls_6.1.1.tar.gz
Windows binaries: r-devel:enpls_6.1.1.zip, r-release:enpls_6.1.1.zip, r-oldrel:enpls_6.1.1.zip
macOS binaries: r-release (arm64):enpls_6.1.1.tgz, r-oldrel (arm64):enpls_6.1.1.tgz, r-release (x86_64):enpls_6.1.1.tgz, r-oldrel (x86_64):enpls_6.1.1.tgz
Old sources: enpls archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=enplsto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp