Movatterモバイル変換


[0]ホーム

URL:


kfino: Kalman Filter for Impulse Noised Outliers

A method for detecting outliers with a Kalman filter on impulsed noised outliers and prediction on cleaned data. 'kfino' is a robust sequential algorithm allowing to filter data with a large number of outliers. This algorithm is based on simple latent linear Gaussian processes as in the Kalman Filter method and is devoted to detect impulse-noised outliers. These are data points that differ significantly from other observations. 'ML' (Maximization Likelihood) and 'EM' (Expectation-Maximization algorithm) algorithms were implemented in 'kfino'. The method is described in full details in the following arXiv e-Print: <doi:10.48550/arXiv.2208.00961>.

Version:1.0.0
Depends:R (≥ 4.1.0)
Imports:ggplot2,dplyr
Suggests:rmarkdown,knitr,testthat (≥ 3.0.0),covr,foreach,doParallel, parallel
Published:2022-11-03
DOI:10.32614/CRAN.package.kfino
Author:Bertrand Cloez [aut], Isabelle Sanchez [aut, cre], Benedicte Fontez [ctr]
Maintainer:Isabelle Sanchez <isabelle.sanchez at inrae.fr>
BugReports:https://forgemia.inra.fr/isabelle.sanchez/kfino/-/issues
License:GPL-3
URL:https://forgemia.inra.fr/isabelle.sanchez/kfino
NeedsCompilation:no
Materials:README
In views:AnomalyDetection
CRAN checks:kfino results

Documentation:

Reference manual:kfino.html ,kfino.pdf
Vignettes:How to perform a kfino outlier detection (source,R code)
How to perform a kfino outlier detection on multiple individuals (source,R code)

Downloads:

Package source: kfino_1.0.0.tar.gz
Windows binaries: r-devel:kfino_1.0.0.zip, r-release:kfino_1.0.0.zip, r-oldrel:kfino_1.0.0.zip
macOS binaries: r-release (arm64):kfino_1.0.0.tgz, r-oldrel (arm64):kfino_1.0.0.tgz, r-release (x86_64):kfino_1.0.0.tgz, r-oldrel (x86_64):kfino_1.0.0.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=kfinoto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp