Dynamic regression for time series using Extreme Gradient Boosting with hyper-parameter tuning via Bayesian Optimization or Random Search.
| Version: | 2.0.1 |
| Depends: | R (≥ 4.1) |
| Imports: | rBayesianOptimization (≥ 1.2.0),xgboost (≥ 1.4.1.1),purrr (≥ 0.3.4),ggplot2 (≥ 3.3.5),readr (≥ 2.1.2),stringr (≥1.4.0),lubridate (≥ 1.7.10),narray (≥ 0.4.1.1),fANCOVA (≥0.6-1),imputeTS (≥ 3.2),scales (≥ 1.1.1),tictoc (≥1.0.1),modeest (≥ 2.4.0),moments (≥ 0.14),Metrics (≥0.1.4), parallel (≥ 4.1.1), utils (≥ 4.1.1), stats (≥ 4.1.1) |
| Published: | 2022-03-23 |
| DOI: | 10.32614/CRAN.package.audrex |
| Author: | Giancarlo Vercellino |
| Maintainer: | Giancarlo Vercellino <giancarlo.vercellino at gmail.com> |
| License: | GPL-3 |
| URL: | https://rpubs.com/giancarlo_vercellino/audrex |
| NeedsCompilation: | no |
| Materials: | NEWS |
| CRAN checks: | audrex results |
| Reference manual: | audrex.html ,audrex.pdf |
| Package source: | audrex_2.0.1.tar.gz |
| Windows binaries: | r-devel:audrex_2.0.1.zip, r-release:audrex_2.0.1.zip, r-oldrel:audrex_2.0.1.zip |
| macOS binaries: | r-release (arm64):audrex_2.0.1.tgz, r-oldrel (arm64):audrex_2.0.1.tgz, r-release (x86_64):audrex_2.0.1.tgz, r-oldrel (x86_64):audrex_2.0.1.tgz |
| Old sources: | audrex archive |
Please use the canonical formhttps://CRAN.R-project.org/package=audrexto link to this page.