Movatterモバイル変換


[0]ホーム

URL:


BayesPPD: Bayesian Power Prior Design

Bayesian power/type I error calculation and model fitting using the power prior and the normalized power prior for generalized linear models. Detailed examples of applying the package are available at <doi:10.32614/RJ-2023-016>. Models for time-to-event outcomes are implemented in the R package 'BayesPPDSurv'. The Bayesian clinical trial design methodology is described in Chen et al. (2011) <doi:10.1111/j.1541-0420.2011.01561.x>, and Psioda and Ibrahim (2019) <doi:10.1093/biostatistics/kxy009>. The normalized power prior is described in Duan et al. (2006) <doi:10.1002/env.752> and Ibrahim et al. (2015) <doi:10.1002/sim.6728>.

Version:1.1.3
Depends:R (≥ 3.5.0)
Imports:Rcpp
LinkingTo:Rcpp,RcppArmadillo,RcppEigen,RcppNumerical
Suggests:rmarkdown,knitr,testthat (≥ 3.0.0),ggplot2,kableExtra
Published:2025-01-13
DOI:10.32614/CRAN.package.BayesPPD
Author:Yueqi Shen [aut, cre], Matthew A. Psioda [aut], Joseph G. Ibrahim [aut]
Maintainer:Yueqi Shen <angieshen6 at gmail.com>
License:GPL (≥ 3)
NeedsCompilation:yes
Citation:BayesPPD citation info
Materials:NEWS
CRAN checks:BayesPPD results

Documentation:

Reference manual:BayesPPD.html ,BayesPPD.pdf
Vignettes:bayesppd-vignette (source,R code)

Downloads:

Package source: BayesPPD_1.1.3.tar.gz
Windows binaries: r-devel:BayesPPD_1.1.3.zip, r-release:BayesPPD_1.1.3.zip, r-oldrel:BayesPPD_1.1.3.zip
macOS binaries: r-release (arm64):BayesPPD_1.1.3.tgz, r-oldrel (arm64):BayesPPD_1.1.3.tgz, r-release (x86_64):BayesPPD_1.1.3.tgz, r-oldrel (x86_64):BayesPPD_1.1.3.tgz
Old sources: BayesPPD archive

Reverse dependencies:

Reverse suggests:psborrow2

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=BayesPPDto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp