Movatterモバイル変換


[0]ホーム

URL:


RaJIVE: Robust Angle Based Joint and Individual Variation Explained

A robust alternative to the aJIVE (angle based Joint and Individual Variation Explained) method (Feng et al 2018: <doi:10.1016/j.jmva.2018.03.008>) for the estimation of joint and individual components in the presence of outliers in multi-source data. It decomposes the multi-source data into joint, individual and residual (noise) contributions. The decomposition is robust to outliers and noise in the data. The method is illustrated in Ponzi et al (2021) <doi:10.48550/arXiv.2101.09110>.

Version:1.0
Depends:R (≥ 3.1.0)
Imports:ggplot2,doParallel,foreach
Suggests:knitr,rmarkdown,testthat (≥ 2.1.0),cowplot,reshape2,dplyr
Published:2021-02-04
DOI:10.32614/CRAN.package.RaJIVE
Author:Erica Ponzi [aut, cre], Abhik Ghosh [aut]
Maintainer:Erica Ponzi <erica.ponzi at medisin.uio.no>
License:MIT + fileLICENSE
NeedsCompilation:no
Materials:README
CRAN checks:RaJIVE results

Documentation:

Reference manual:RaJIVE.html ,RaJIVE.pdf

Downloads:

Package source: RaJIVE_1.0.tar.gz
Windows binaries: r-devel:RaJIVE_1.0.zip, r-release:RaJIVE_1.0.zip, r-oldrel:RaJIVE_1.0.zip
macOS binaries: r-release (arm64):RaJIVE_1.0.tgz, r-oldrel (arm64):RaJIVE_1.0.tgz, r-release (x86_64):RaJIVE_1.0.tgz, r-oldrel (x86_64):RaJIVE_1.0.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=RaJIVEto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp