Movatterモバイル変換


[0]ホーム

URL:


ONAM: Fitting Interpretable Neural Additive Models UsingOrthogonalization

An algorithm for fitting interpretable additive neural networks for identifiable and visualizable feature effects using post hoc orthogonalization. Fit custom neural networks intuitively using established 'R' 'formula' notation, including interaction effects of arbitrary order while preserving identifiability to enable a functional decomposition of the prediction function. For more details see Koehler et al. (2025) <doi:10.1038/s44387-025-00033-7>.

Version:1.0.0
Depends:keras3,reticulate
Imports:dplyr,scales,rlang,ggplot2,pROC
Suggests:akima,RColorBrewer,testthat (≥ 3.0.0)
Published:2025-11-11
DOI:10.32614/CRAN.package.ONAM
Author:David KöhlerORCID iD [aut, cre]
Maintainer:David Köhler <koehler at imbie.uni-bonn.de>
BugReports:https://github.com/Koehlibert/ONAM_R/issues
License:MIT + fileLICENSE
NeedsCompilation:no
Materials:README
CRAN checks:ONAM results

Documentation:

Reference manual:ONAM.html ,ONAM.pdf

Downloads:

Package source: ONAM_1.0.0.tar.gz
Windows binaries: r-devel:ONAM_1.0.0.zip, r-release:ONAM_1.0.0.zip, r-oldrel:ONAM_1.0.0.zip
macOS binaries: r-release (arm64):ONAM_1.0.0.tgz, r-oldrel (arm64):ONAM_1.0.0.tgz, r-release (x86_64):ONAM_1.0.0.tgz, r-oldrel (x86_64):ONAM_1.0.0.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=ONAMto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp