Movatterモバイル変換


[0]ホーム

URL:


kergp: Gaussian Process Laboratory

Gaussian process regression with an emphasis on kernels. Quantitative and qualitative inputs are accepted. Some pre-defined kernels are available, such as radial or tensor-sum for quantitative inputs, and compound symmetry, low rank, group kernel for qualitative inputs. The user can define new kernels and composite kernels through a formula mechanism. Useful methods include parameter estimation by maximum likelihood, simulation, prediction and leave-one-out validation.

Version:0.5.8
Depends:Rcpp (≥ 0.10.5), methods,testthat,nloptr,lattice
Imports:MASS,numDeriv, stats4,doParallel,doFuture, utils
LinkingTo:Rcpp
Suggests:DiceKriging,DiceDesign,inline,foreach,knitr,ggplot2,reshape2,corrplot
Published:2024-11-19
DOI:10.32614/CRAN.package.kergp
Author:Yves DevilleORCID iD [aut], David GinsbourgerORCID iD [aut], Olivier Roustant [aut, cre], Nicolas Durrande [ctb]
Maintainer:Olivier Roustant <roustant at insa-toulouse.fr>
License:GPL-3
NeedsCompilation:yes
CRAN checks:kergp results

Documentation:

Reference manual:kergp.html ,kergp.pdf

Downloads:

Package source: kergp_0.5.8.tar.gz
Windows binaries: r-devel:kergp_0.5.8.zip, r-release:kergp_0.5.8.zip, r-oldrel:kergp_0.5.8.zip
macOS binaries: r-release (arm64):kergp_0.5.8.tgz, r-oldrel (arm64):kergp_0.5.8.tgz, r-release (x86_64):kergp_0.5.8.tgz, r-oldrel (x86_64):kergp_0.5.8.tgz
Old sources: kergp archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=kergpto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp