Movatterモバイル変換


[0]ホーム

URL:


StempCens: Spatio-Temporal Estimation and Prediction for Censored/MissingResponses

It estimates the parameters of spatio-temporal models with censored or missing data using the SAEM algorithm (Delyon et al., 1999). This algorithm is a stochastic approximation of the widely used EM algorithm and is particularly valuable for models in which the E-step lacks a closed-form expression. It also provides a function to compute the observed information matrix using the method developed by Louis (1982). To assess the performance of the fitted model, case-deletion diagnostics are provided.

Version:1.2.0
Imports:Rcpp, stats, utils,mvtnorm,tmvtnorm,MCMCglmm,ggplot2, grid,Rdpack
LinkingTo:Rcpp,RcppArmadillo
Suggests:testthat
Published:2025-06-11
DOI:10.32614/CRAN.package.StempCens
Author:Larissa A. MatosORCID iD [aut, cre], Katherine L. ValerianoORCID iD [aut], Victor H. LachosORCID iD [ctb]
Maintainer:Larissa A. Matos <larissa.amatos at gmail.com>
License:GPL-2 |GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation:yes
Citation:StempCens citation info
Materials:README,NEWS
In views:MissingData
CRAN checks:StempCens results

Documentation:

Reference manual:StempCens.html ,StempCens.pdf

Downloads:

Package source: StempCens_1.2.0.tar.gz
Windows binaries: r-devel:StempCens_1.2.0.zip, r-release:StempCens_1.2.0.zip, r-oldrel:StempCens_1.2.0.zip
macOS binaries: r-release (arm64):StempCens_1.2.0.tgz, r-oldrel (arm64):StempCens_1.2.0.tgz, r-release (x86_64):StempCens_1.2.0.tgz, r-oldrel (x86_64):StempCens_1.2.0.tgz
Old sources: StempCens archive

Reverse dependencies:

Reverse imports:RcppCensSpatial

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=StempCensto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp