Felipe CampeloDepartment of Computer Science
Aston University
Birmingham, UK
Lucas Batista
Operations Research and Complex Systems Laboratory - ORCS Lab
Universidade Federal de Minas Gerais
Belo Horizonte, Brazil
Claus Aranha
Faculty of Engineering, Information and Systems
University of Tsukuba
Tsukuba, Japan
R package containing a component-based, modularimplementation of the Multiobjective Evolutionary Algorithm withDecomposition (MOEA/D) framework.
The MOEA/D framework is seen as a combination of specific designdecisions regarding several independent modules:
This package provides several options for each module, as explainedin the documentation of its main function,MOEADr::moead().The input structure of this function is also explained in itsdocumentation. More details on the component-based approach behind theMOEADr package are available in our paper,The MOEADrPackage - A Component-Based Framework for Multiobjective EvolutionaryAlgorithms Based on Decomposition, available on the ArXiv:https://arxiv.org/abs/1807.06731.
To install the current release version in your system, simplyuse:
install.packages("MOEADr")For the most up-to-date development version, install the githubversion using:
# install.packages("devtools")devtools::install_github("fcampelo/MOEADr")As a simple example, we can reproduce the original MOEA/D (Zhang andLi, 2007) and run it on a 30-variable ZDT1 function:
## 1: prepare test problem library(smoof) ZDT1 <- make_vectorized_smoof(prob.name = "ZDT1", dimensions = 30) ## 2: set input parameters problem <- list(name = "ZDT1", xmin = rep(0, 30), xmax = rep(1, 30), m = 2) decomp <- list(name = "SLD", H = 99) neighbors <- list(name = "lambda", T = 20, delta.p = 1) aggfun <- list(name = "wt") variation <- list(list(name = "sbx", etax = 20, pc = 1), list(name = "polymut", etam = 20, pm = 0.1), list(name = "truncate")) update <- list(name = "standard", UseArchive = FALSE) scaling <- list(name = "none") constraint<- list(name = "none") stopcrit <- list(list(name = "maxiter", maxiter = 200)) showpars <- list(show.iters = "dots", showevery = 10) seed <- NULL ## 3: run MOEA/D out1 <- moead(problem = problem, decomp = decomp, aggfun = aggfun, neighbors = neighbors, variation = variation, update = update, constraint = constraint, scaling = scaling, stopcrit = stopcrit, showpars = showpars, seed = seed) ## 3.1: For your convenience, you can also use the preset_moead() function to reproduce the above setup, ## and only modify the desired parts: out2 <- moead(problem = problem, preset = preset_moead("original"), stopcrit = list(list(name = "maxiter", maxiter = 1000)), showpars = showpars, seed = 42) # 4: Plot output: plot(out1$Y[,1], out1$Y[,2], type = "p", pch = 20)Have fun!
Felipe