Movatterモバイル変換


[0]ホーム

URL:


forecastML: Time Series Forecasting with Machine Learning Methods

The purpose of 'forecastML' is to simplify the process of multi-step-ahead forecasting with standard machine learning algorithms. 'forecastML' supports lagged, dynamic, static, and grouping features for modeling single and grouped numeric or factor/sequence time series. In addition, simple wrapper functions are used to support model-building with most R packages. This approach to forecasting is inspired by Bergmeir, Hyndman, and Koo's (2018) paper "A note on the validity of cross-validation for evaluating autoregressive time series prediction" <doi:10.1016/j.csda.2017.11.003>.

Version:0.9.0
Depends:R (≥ 3.5.0),dplyr (≥ 0.8.3)
Imports:tidyr (≥ 0.8.1),rlang (≥ 0.4.0),magrittr (≥ 1.5),lubridate (≥ 1.7.4),ggplot2 (≥ 3.1.0),future.apply (≥1.3.0), methods,purrr (≥ 0.3.2),data.table (≥ 1.12.6),dtplyr (≥ 1.0.0),tibble (≥ 2.1.3)
Suggests:glmnet (≥ 2.0.16),DT (≥ 0.5),knitr (≥ 1.22),rmarkdown (≥ 1.12.6),xgboost (≥ 0.82.1),randomForest (≥ 4.6.14),testthat (≥ 2.2.1),covr (≥ 3.3.1)
Published:2020-05-07
DOI:10.32614/CRAN.package.forecastML
Author:Nickalus Redell
Maintainer:Nickalus Redell <nickalusredell at gmail.com>
License:MIT + fileLICENSE
URL:https://github.com/nredell/forecastML/
NeedsCompilation:no
Materials:README
In views:TimeSeries
CRAN checks:forecastML results[issues need fixing before 2025-12-22]

Documentation:

Reference manual:forecastML.html ,forecastML.pdf
Vignettes:Forecast Combination (source,R code)
Customizing Wrapper Functions (source,R code)
Direct Forecasting with Multiple Time Series (source,R code)
Custom Feature Lags (source,R code)
forecastML Overview (source,R code)

Downloads:

Package source: forecastML_0.9.0.tar.gz
Windows binaries: r-devel:forecastML_0.9.0.zip, r-release:forecastML_0.9.0.zip, r-oldrel:forecastML_0.9.0.zip
macOS binaries: r-release (arm64):forecastML_0.9.0.tgz, r-oldrel (arm64):forecastML_0.9.0.tgz, r-release (x86_64):forecastML_0.9.0.tgz, r-oldrel (x86_64):forecastML_0.9.0.tgz
Old sources: forecastML archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=forecastMLto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp