Movatterモバイル変換


[0]ホーム

URL:


Title:Microsoft Finance Time Series Forecasting Framework
Version:0.6.0
Description:Automated time series forecasting developed by Microsoft Finance. The Microsoft Finance Time Series Forecasting Framework, aka Finn, can be used to forecast any component of the income statement, balance sheet, or any other area of interest by finance. Any numerical quantity over time, Finn can be used to forecast it. While it can be applied outside of the finance domain, Finn was built to meet the needs of financial analysts to better forecast their businesses within a company, and has a lot of built in features that are specific to the needs of financial forecasters. Happy forecasting!
URL:https://microsoft.github.io/finnts/,https://github.com/microsoft/finnts
BugReports:https://github.com/microsoft/finnts/issues
License:MIT + file LICENSE
Encoding:UTF-8
RoxygenNote:7.3.2
Imports:cli, Cubist, dials, digest, doParallel, dplyr, earth, feasts,foreach, fs, generics, glue, glmnet, gtools, hts, kernlab,lubridate, magrittr, methods, parallel, parsnip, plyr, purrr,recipes, rlang, rsample, rules, snakecase, stringr, tibble,tidyr, tidyselect, timetk, tune, vroom, workflows
Suggests:arrow (≥ 8.0.0), AzureStor, Boruta, corrr, knitr,Microsoft365R, notebookutils, qs, reactable, rmarkdown,sparklyr, testthat (≥ 3.0.0), vip
Config/testthat/edition:3
Depends:R (≥ 4.0), modeltime
VignetteBuilder:knitr
NeedsCompilation:no
Packaged:2025-09-04 15:57:44 UTC; mitokic
Author:Mike TokicORCID iD [aut, cre], Aadharsh KannanORCID iD [aut]
Maintainer:Mike Tokic <mftokic@gmail.com>
Repository:CRAN
Date/Publication:2025-09-04 17:00:09 UTC

CUBIST Multistep Horizon

Description

CUBIST Multistep Horizon

Usage

cubist_multistep(  mode = "regression",  committees = NULL,  neighbors = NULL,  max_rules = NULL,  lag_periods = NULL,  external_regressors = NULL,  forecast_horizon = NULL,  selected_features = NULL)

Arguments

mode

A single character string for the type of model.The only possible value for this model is "regression".

committees

committees

neighbors

neighbors

max_rules

max rules

external_regressors

external regressors

forecast_horizon

forecast horizon

selected_features

selected features

Value

Get Multistep Horizon CUBIST model


Bridge CUBIST Multistep Modeling function

Description

Bridge CUBIST Multistep Modeling function

Usage

cubist_multistep_fit_impl(  x,  y,  committees = 1,  neighbors = 0,  max_rules = 10,  lag_periods = NULL,  external_regressors = NULL,  forecast_horizon = NULL,  selected_features = NULL)

Arguments

x

A dataframe of xreg (exogenous regressors)

y

A numeric vector of values to fit

committees

committees

neighbors

neighbors

max_rules

max rules

lag_periods

lag periods

external_regressors

external regressors

forecast_horizon

forecast horizon

selected_features

selected features


Bridge prediction Function for CUBIST Multistep Horizon Models

Description

Bridge prediction Function for CUBIST Multistep Horizon Models

Usage

cubist_multistep_predict_impl(object, new_data, ...)

Arguments

object

model object

new_data

input data to predict

...

Additionalparsnip-related options, depending on thevalue oftype. Arguments to the underlying model's predictionfunction cannot be passed here (use theopts argument instead).Possible arguments are:

  • interval: fortype equal to"survival" or"quantile", shouldinterval estimates be added, if available? Options are"none"and"confidence".

  • level: fortype equal to"conf_int","pred_int", or"survival",this is the parameter for the tail area of the intervals(e.g. confidence level for confidence intervals).Default value is0.95.

  • std_error: fortype equal to"conf_int" or"pred_int", addthe standard error of fit or prediction (on the scale of thelinear predictors). Default value isFALSE.

  • quantile: fortype equal toquantile, the quantiles of thedistribution. Default is(1:9)/10.

  • eval_time: fortype equal to"survival" or"hazard", thetime points at which the survival probability or hazard is estimated.

Value

predictions


Ensemble Models

Description

Create ensemble model forecasts

Usage

ensemble_models(  run_info,  parallel_processing = NULL,  inner_parallel = FALSE,  num_cores = NULL,  seed = 123)

Arguments

run_info

run info using theset_run_info() function

parallel_processing

Default of NULL runs no parallel processing andforecasts each individual time series one after another. 'local_machine'leverages all cores on current machine Finn is running on. 'spark'runs time series in parallel on a spark cluster in Azure Databricks orAzure Synapse.

inner_parallel

Run components of forecast process inside a specifictime series in parallel. Can only be used if parallel_processing isset to NULL or 'spark'.

num_cores

Number of cores to run when parallel processing is set up.Used when running parallel computations on local machine or within Azure.Default of NULL uses total amount of cores on machine minus one. Can'tbe greater than number of cores on machine minus 1.

seed

Set seed for random number generator. Numeric value.

Value

Ensemble model outputs are written to disk

Examples

data_tbl <- timetk::m4_monthly %>%  dplyr::rename(Date = date) %>%  dplyr::mutate(id = as.character(id)) %>%  dplyr::filter(    Date >= "2013-01-01",    Date <= "2015-06-01",    id == "M750"  )run_info <- set_run_info()prep_data(run_info,  input_data = data_tbl,  combo_variables = c("id"),  target_variable = "value",  date_type = "month",  forecast_horizon = 3)prep_models(run_info,  models_to_run = c("arima", "glmnet"),  num_hyperparameters = 2)train_models(run_info,  run_global_models = FALSE)ensemble_models(run_info)

Final Models

Description

Select Best Models and Prep Final Outputs

Usage

final_models(  run_info,  average_models = TRUE,  max_model_average = 3,  weekly_to_daily = TRUE,  parallel_processing = NULL,  inner_parallel = FALSE,  num_cores = NULL)

Arguments

run_info

run info using theset_run_info() function.

average_models

If TRUE, create simple averages of individual modelsand save the most accurate one.

max_model_average

Max number of models to average together. Willcreate model averages for 2 models up until input value or max number ofmodels ran.

weekly_to_daily

If TRUE, convert a week forecast down to day byevenly splitting across each day of week. Helps when aggregatingup to higher temporal levels like month or quarter.

parallel_processing

Default of NULL runs no parallel processing andforecasts each individual time series one after another. 'local_machine'leverages all cores on current machine Finn is running on. 'spark'runs time series in parallel on a spark cluster in Azure Databricks orAzure Synapse.

inner_parallel

Run components of forecast process inside a specifictime series in parallel. Can only be used if parallel_processing isset to NULL or 'spark'.

num_cores

Number of cores to run when parallel processing is set up.Used when running parallel computations on local machine or within Azure.Default of NULL uses total amount of cores on machine minus one. Can't begreater than number of cores on machine minus 1.

Value

Final model outputs are written to disk.

Examples

data_tbl <- timetk::m4_monthly %>%  dplyr::rename(Date = date) %>%  dplyr::mutate(id = as.character(id)) %>%  dplyr::filter(    Date >= "2013-01-01",    Date <= "2015-06-01"  )run_info <- set_run_info()prep_data(run_info,  input_data = data_tbl,  combo_variables = c("id"),  target_variable = "value",  date_type = "month",  forecast_horizon = 3)prep_models(run_info,  models_to_run = c("arima", "ets"),  back_test_scenarios = 3)train_models(run_info,  run_global_models = FALSE)final_models(run_info)

Finn Forecast Framework

Description

Calls the Finn forecast framework to automatically forecast any historical time series.

Usage

forecast_time_series(  run_info = NULL,  input_data,  combo_variables,  target_variable,  date_type,  forecast_horizon,  external_regressors = NULL,  hist_start_date = NULL,  hist_end_date = NULL,  combo_cleanup_date = NULL,  fiscal_year_start = 1,  clean_missing_values = TRUE,  clean_outliers = FALSE,  back_test_scenarios = NULL,  back_test_spacing = NULL,  modeling_approach = "accuracy",  forecast_approach = "bottoms_up",  parallel_processing = NULL,  inner_parallel = FALSE,  num_cores = NULL,  negative_forecast = FALSE,  fourier_periods = NULL,  lag_periods = NULL,  rolling_window_periods = NULL,  recipes_to_run = NULL,  pca = NULL,  models_to_run = NULL,  models_not_to_run = NULL,  run_global_models = NULL,  run_local_models = TRUE,  run_ensemble_models = NULL,  average_models = TRUE,  max_model_average = 3,  feature_selection = FALSE,  weekly_to_daily = TRUE,  seed = 123,  run_model_parallel = FALSE,  return_data = TRUE,  run_name = "finnts_forecast")

Arguments

run_info

Run info usingset_run_info()

input_data

A data frame or tibble of historical time series data. Can also include external regressors for bothhistorical and future data.

combo_variables

List of column headers within input data to be used to separate individual time series.

target_variable

The column header formatted as a character value within input data you want to forecast.

date_type

The date granularity of the input data. Finn accepts the following as a character stringday, week, month, quarter, year.

forecast_horizon

Number of periods to forecast into the future.

external_regressors

List of column headers within input data to be used as features in multivariate models.

hist_start_date

Date value of when your input_data starts. Default of NULL is to use earliest date value ininput_data.

hist_end_date

Date value of when your input_data ends.Default of NULL is to use the latest date value ininput_data.

combo_cleanup_date

Date value to remove individual time series that don't contain non-zero values afterthat specified date. Default of NULL is to not remove any time series and attempt to forecast all of them.

fiscal_year_start

Month number of start of fiscal year of input data, aids in building out date features.Formatted as a numeric value. Default of 1 assumes fiscal year starts in January.

clean_missing_values

If TRUE, cleans missing values. Only impute values for missing data within anexisting series, and does not add new values onto the beginning or end, but does provide a value of 0 for saidvalues. Turned off when running hierarchical forecasts.

clean_outliers

If TRUE, outliers are cleaned and inputted with values more in line with historical data

back_test_scenarios

Number of specific back test folds to run when determining the best model.Default of NULL will automatically choose the number of back tests to run based on historical data size,which tries to always use a minimum of 80% of the data when training a model.

back_test_spacing

Number of periods to move back for each back test scenario. Default of NULL moves back 1period at a time for year, quarter, and month data. Moves back 4 for week and 7 for day data.

modeling_approach

How Finn should approach your data. Current default and only option is 'accuracy'. In thefuture this could evolve to other areas like optimizing for interpretability over accuracy.

forecast_approach

How the forecast is created. The default of 'bottoms_up' trains models for each individualtime series. 'grouped_hierarchy' creates a grouped time series to forecast at while 'standard_hierarchy' createsa more traditional hierarchical time series to forecast, both based on the hts package.

parallel_processing

Default of NULL runs no parallel processing andforecasts each individual time series one after another. 'local_machine'leverages all cores on current machine Finn is running on. 'spark'runs time series in parallel on a spark cluster in Azure Databricks orAzure Synapse.

inner_parallel

Run components of forecast process inside a specifictime series in parallel. Can only be used if parallel_processing isset to NULL or 'spark'.

num_cores

Number of cores to run when parallel processing is set up. Used when running parallel computationson local machine or within Azure. Default of NULL uses total amount of cores on machine minus one. Can't be greaterthan number of cores on machine minus 1.

negative_forecast

If TRUE, allow forecasts to dip below zero.

fourier_periods

List of values to use in creating fourier series as features. Default of NULL automatically choosesthese values based on the date_type.

lag_periods

List of values to use in creating lag features. Default of NULL automatically chooses these valuesbased on date_type.

rolling_window_periods

List of values to use in creating rolling window features. Default of NULL automaticallychooses these values based on date type.

recipes_to_run

List of recipes to run on multivariate models that can run different recipes. A value of NULL runsall recipes, but only runs the R1 recipe for weekly and daily date types, and also for global models to prevent memory issues.A value of "all" runs all recipes, regardless of date type or if it's a local/global model. A list like c("R1") or c("R2")would only run models with the R1 or R2 recipe.

pca

If TRUE, run principle component analysis on any lagged features to speed up model run time. Default of NULL runsPCA on day and week date types across all local multivariate models, and also for global models across all date types.

models_to_run

List of models to run. Default of NULL runs all models.

models_not_to_run

List of models not to run, overrides values in models_to_run. Default of NULL doesn't turn offany model.

run_global_models

If TRUE, run multivariate models on the entire data set (across all time series) as a global model.Can be override by models_not_to_run. Default of NULL runs global models for all date types except week and day.

run_local_models

If TRUE, run models by individual time series as local models.

run_ensemble_models

If TRUE, run ensemble models. Default of NULL runs ensemble models only for quarter and monthdate types.

average_models

If TRUE, create simple averages of individual models.

max_model_average

Max number of models to average together. Will create model averages for 2 models up until input valueor max number of models ran.

feature_selection

Implement feature selection before model training

weekly_to_daily

If TRUE, convert a week forecast down to day by evenly splitting across each day of week. Helps when aggregatingup to higher temporal levels like month or quarter.

seed

Set seed for random number generator. Numeric value.

run_model_parallel

If TRUE, runs model training in parallel, only works when parallel_processing is set to'local_machine' or 'spark'. Recommended to use a value of FALSE and leverageinner_parallel for new features.

return_data

If TRUE, return the forecast results. Used to be backwards compatiblewith previous finnts versions. Recommended to use a value of FALSE and leverageget_forecast_data() for new features.

run_name

Name used when submitting jobs to external compute like Azure Batch. Formatted as a character string.

Value

A list of three separate data sets: the future forecast, the back test results, and the best model per time series.

Examples

run_info <- set_run_info()finn_forecast <- forecast_time_series(  run_info = run_info,  input_data = m750 %>% dplyr::rename(Date = date),  combo_variables = c("id"),  target_variable = "value",  date_type = "month",  forecast_horizon = 3,  back_test_scenarios = 6,  run_model_parallel = FALSE,  models_to_run = c("arima", "ets", "snaive"),  return_data = FALSE)fcst_tbl <- get_forecast_data(run_info)models_tbl <- get_trained_models(run_info)

Get Final Forecast Data

Description

Get Final Forecast Data

Usage

get_forecast_data(run_info, return_type = "df")

Arguments

run_info

run info using theset_run_info() function

return_type

return type

Value

table of final forecast results

Examples

data_tbl <- timetk::m4_monthly %>%  dplyr::rename(Date = date) %>%  dplyr::mutate(id = as.character(id)) %>%  dplyr::filter(    id == "M2",    Date >= "2012-01-01",    Date <= "2015-06-01"  )run_info <- set_run_info()prep_data(run_info,  input_data = data_tbl,  combo_variables = c("id"),  target_variable = "value",  date_type = "month",  forecast_horizon = 3,  recipes_to_run = "R1")prep_models(run_info,  models_to_run = c("arima", "ets"),  num_hyperparameters = 1)train_models(run_info,  run_local_models = TRUE)final_models(run_info,  average_models = FALSE)fcst_tbl <- get_forecast_data(run_info)

Get Prepped Data

Description

Get Prepped Data

Usage

get_prepped_data(run_info, recipe, return_type = "df")

Arguments

run_info

run info using theset_run_info() function

recipe

recipe to return. Either a value of "R1" or "R2"

return_type

return type

Value

table of prepped data

Examples

data_tbl <- timetk::m4_monthly %>%  dplyr::rename(Date = date) %>%  dplyr::mutate(id = as.character(id)) %>%  dplyr::filter(    id == "M2",    Date >= "2012-01-01",    Date <= "2015-06-01"  )run_info <- set_run_info()prep_data(run_info,  input_data = data_tbl,  combo_variables = c("id"),  target_variable = "value",  date_type = "month",  forecast_horizon = 3,  recipes_to_run = "R1")R1_prepped_data_tbl <- get_prepped_data(run_info,  recipe = "R1")

Get Prepped Model Info

Description

Get Prepped Model Info

Usage

get_prepped_models(run_info)

Arguments

run_info

run info using theset_run_info() function

Value

table with data related to model workflows, hyperparameters, and back testing

Examples

data_tbl <- timetk::m4_monthly %>%  dplyr::rename(Date = date) %>%  dplyr::mutate(id = as.character(id)) %>%  dplyr::filter(    id == "M2",    Date >= "2012-01-01",    Date <= "2015-06-01"  )run_info <- set_run_info()prep_data(run_info,  input_data = data_tbl,  combo_variables = c("id"),  target_variable = "value",  date_type = "month",  forecast_horizon = 3,  recipes_to_run = "R1")prep_models(run_info,  models_to_run = c("arima", "ets"),  num_hyperparameters = 1)prepped_models_tbl <- get_prepped_models(run_info = run_info)

Get run info

Description

Lets you get all of the logging associated with a specific experiment or run.

Usage

get_run_info(  experiment_name = NULL,  run_name = NULL,  storage_object = NULL,  path = NULL)

Arguments

experiment_name

Name used to group similar runs under asingle experiment name.

run_name

Name to distinguish one run of Finn from another.The current time in UTC is appended to the run name to ensurea unique run name is created.

storage_object

Used to store outputs during a run to otherstorage services in Azure. Could be a storage container object fromthe 'AzureStor' package to connect to ADLS blob storage or aOneDrive/SharePoint object from the 'Microsoft365R' package to connectto a OneDrive folder or SharePoint site. Default of NULL will save outputsto the local file system.

path

String showing what file path the outputs should be written to.Default of NULL will write the outputs to a temporary directory within R,which will delete itself after the R session closes.

Value

Data frame of run log information

Examples

run_info <- set_run_info(  experiment_name = "finn_forecast",  run_name = "test_run")run_info_tbl <- get_run_info(  experiment_name = "finn_forecast")

Get Final Trained Models

Description

Get Final Trained Models

Usage

get_trained_models(run_info)

Arguments

run_info

run info using theset_run_info() function

Value

table of final trained models

Examples

data_tbl <- timetk::m4_monthly %>%  dplyr::rename(Date = date) %>%  dplyr::mutate(id = as.character(id)) %>%  dplyr::filter(    id == "M2",    Date >= "2012-01-01",    Date <= "2015-06-01"  )run_info <- set_run_info()prep_data(run_info,  input_data = data_tbl,  combo_variables = c("id"),  target_variable = "value",  date_type = "month",  forecast_horizon = 3,  recipes_to_run = "R1")prep_models(run_info,  models_to_run = c("arima", "ets"),  num_hyperparameters = 1)train_models(run_info,  run_global_models = FALSE,  run_local_models = TRUE)final_models(run_info,  average_models = FALSE)models_tbl <- get_trained_models(run_info)

GLMNET Multistep Horizon

Description

GLMNET Multistep Horizon

Usage

glmnet_multistep(  mode = "regression",  mixture = NULL,  penalty = NULL,  lag_periods = NULL,  external_regressors = NULL,  forecast_horizon = NULL,  selected_features = NULL)

Arguments

mode

A single character string for the type of model.The only possible value for this model is "regression".

mixture

mixture

penalty

penalty

lag_periods

lag periods

external_regressors

external regressors

forecast_horizon

forecast horizon

selected_features

selected features

Value

Get Multistep Horizon GLMNET model


Bridge GLMNET Multistep Modeling function

Description

Bridge GLMNET Multistep Modeling function

Usage

glmnet_multistep_fit_impl(  x,  y,  alpha = 0,  lambda = 1,  lag_periods = NULL,  external_regressors = NULL,  forecast_horizon = NULL,  selected_features = NULL)

Arguments

x

A dataframe of xreg (exogenous regressors)

y

A numeric vector of values to fit

alpha

alpha

lambda

lambda

lag_periods

lag periods

external_regressors

external regressors

forecast_horizon

forecast horizon

selected_features

selected features


Bridge prediction Function for GLMNET Multistep Horizon Models

Description

Bridge prediction Function for GLMNET Multistep Horizon Models

Usage

glmnet_multistep_predict_impl(object, new_data, ...)

Arguments

object

model object

new_data

input data to predict

...

Additionalparsnip-related options, depending on thevalue oftype. Arguments to the underlying model's predictionfunction cannot be passed here (use theopts argument instead).Possible arguments are:

  • interval: fortype equal to"survival" or"quantile", shouldinterval estimates be added, if available? Options are"none"and"confidence".

  • level: fortype equal to"conf_int","pred_int", or"survival",this is the parameter for the tail area of the intervals(e.g. confidence level for confidence intervals).Default value is0.95.

  • std_error: fortype equal to"conf_int" or"pred_int", addthe standard error of fit or prediction (on the scale of thelinear predictors). Default value isFALSE.

  • quantile: fortype equal toquantile, the quantiles of thedistribution. Default is(1:9)/10.

  • eval_time: fortype equal to"survival" or"hazard", thetime points at which the survival probability or hazard is estimated.

Value

predictions


List all available models

Description

List all available models

Usage

list_models()

Value

list of models


MARS Multistep Horizon

Description

MARS Multistep Horizon

Usage

mars_multistep(  mode = "regression",  num_terms = NULL,  prod_degree = NULL,  prune_method = NULL,  lag_periods = NULL,  external_regressors = NULL,  forecast_horizon = NULL,  selected_features = NULL)

Arguments

mode

A single character string for the type of model.The only possible value for this model is "regression".

num_terms

The number of features that will be retained inthe final model, including the intercept.

prod_degree

The highest possible interaction degree.

prune_method

The pruning method.

lag_periods

lag periods

external_regressors

external regressors

forecast_horizon

forecast horizon

selected_features

selected features

Value

Get Multistep Horizon MARS model


Bridge MARS Multistep Modeling function

Description

Bridge MARS Multistep Modeling function

Usage

mars_multistep_fit_impl(  x,  y,  nprune = NULL,  degree = 1L,  pmethod = "backward",  lag_periods = NULL,  external_regressors = NULL,  forecast_horizon = NULL,  selected_features = NULL)

Arguments

x

A dataframe of xreg (exogenous regressors)

y

A numeric vector of values to fit

nprune

The number of features that will be retained inthe final model, including the intercept.

degree

The highest possible interaction degree.

pmethod

The pruning method.

lag_periods

lag periods

external_regressors

external regressors

forecast_horizon

forecast horizon

selected_features

selected features


Bridge prediction Function for mars Multistep Horizon Models

Description

Bridge prediction Function for mars Multistep Horizon Models

Usage

mars_multistep_predict_impl(object, new_data, ...)

Arguments

object

model object

new_data

input data to predict

...

Additionalparsnip-related options, depending on thevalue oftype. Arguments to the underlying model's predictionfunction cannot be passed here (use theopts argument instead).Possible arguments are:

  • interval: fortype equal to"survival" or"quantile", shouldinterval estimates be added, if available? Options are"none"and"confidence".

  • level: fortype equal to"conf_int","pred_int", or"survival",this is the parameter for the tail area of the intervals(e.g. confidence level for confidence intervals).Default value is0.95.

  • std_error: fortype equal to"conf_int" or"pred_int", addthe standard error of fit or prediction (on the scale of thelinear predictors). Default value isFALSE.

  • quantile: fortype equal toquantile, the quantiles of thedistribution. Default is(1:9)/10.

  • eval_time: fortype equal to"survival" or"hazard", thetime points at which the survival probability or hazard is estimated.

Value

predictions


Predict custom cubist model

Description

Predict custom cubist model

Usage

## S3 method for class 'cubist_multistep_fit_impl'predict(object, new_data, ...)

Arguments

object

model object

new_data

input data to predict

Value

predictions


Predict custom glmnet model

Description

Predict custom glmnet model

Usage

## S3 method for class 'glmnet_multistep_fit_impl'predict(object, new_data, ...)

Arguments

object

model object

new_data

input data to predict

Value

predictions


Predict custom mars model

Description

Predict custom mars model

Usage

## S3 method for class 'mars_multistep_fit_impl'predict(object, new_data, ...)

Arguments

object

model object

new_data

input data to predict

Value

predictions


Predict custom svm_poly model

Description

Predict custom svm_poly model

Usage

## S3 method for class 'svm_poly_multistep_fit_impl'predict(object, new_data, ...)

Arguments

object

model object

new_data

input data to predict

Value

predictions


Predict custom svm_rbf model

Description

Predict custom svm_rbf model

Usage

## S3 method for class 'svm_rbf_multistep_fit_impl'predict(object, new_data, ...)

Arguments

object

model object

new_data

input data to predict

Value

predictions


Predict custom xgboost model

Description

Predict custom xgboost model

Usage

## S3 method for class 'xgboost_multistep_fit_impl'predict(object, new_data, ...)

Arguments

object

model object

new_data

input data to predict

Value

predictions


Prep Data

Description

Preps data with various feature engineering recipes to create features before training models

Usage

prep_data(  run_info,  input_data,  combo_variables,  target_variable,  date_type,  forecast_horizon,  external_regressors = NULL,  hist_start_date = NULL,  hist_end_date = NULL,  combo_cleanup_date = NULL,  fiscal_year_start = 1,  clean_missing_values = TRUE,  clean_outliers = FALSE,  box_cox = FALSE,  stationary = TRUE,  forecast_approach = "bottoms_up",  parallel_processing = NULL,  num_cores = NULL,  fourier_periods = NULL,  lag_periods = NULL,  rolling_window_periods = NULL,  recipes_to_run = NULL,  multistep_horizon = FALSE)

Arguments

run_info

Run info usingset_run_info()

input_data

A standard data frame, tibble, or spark data frame using sparklyr of historical time series data.Can also include external regressors for both historical and future data.

combo_variables

List of column headers within input data to be used to separate individual time series.

target_variable

The column header formatted as a character value within input data you want to forecast.

date_type

The date granularity of the input data. Finn accepts the following as a character string:day, week, month, quarter, year.

forecast_horizon

Number of periods to forecast into the future.

external_regressors

List of column headers within input data to be used as features in multivariate models.

hist_start_date

Date value of when your input_data starts. Default of NULL uses earliest date value ininput_data.

hist_end_date

Date value of when your input_data ends. Default of NULL uses the latest date value ininput_data.

combo_cleanup_date

Date value to remove individual time series that don't contain non-zero values afterthat specified date. Default of NULL is to not remove any time series and attempt to forecast all time series.

fiscal_year_start

Month number of start of fiscal year of input data, aids in building out date features.Formatted as a numeric value. Default of 1 assumes fiscal year starts in January.

clean_missing_values

If TRUE, cleans missing values. Only impute values for missing data within anexisting series, and does not add new values onto the beginning or end, but does provide a value of 0 for saidvalues.

clean_outliers

If TRUE, outliers are cleaned and inputted with values more in line with historical data.

box_cox

Apply box-cox transformation to normalize variance in data

stationary

Apply differencing to make data stationary

forecast_approach

How the forecast is created. The default of 'bottoms_up' trains models for each individualtime series. Value of 'grouped_hierarchy' creates a grouped time series to forecast at while 'standard_hierarchy' createsa more traditional hierarchical time series to forecast, both based on the hts package.

parallel_processing

Default of NULL runs no parallel processing and forecasts each individual time seriesone after another. Value of 'local_machine' leverages all cores on current machine Finn is running on.Value of 'spark' runs time series in parallel on a spark cluster in Azure Databricks/Synapse.

num_cores

Number of cores to run when parallel processing is set up. Used when running parallel computationson local machine or within Azure. Default of NULL uses total amount of cores on machine minus one. Can't be greaterthan number of cores on machine minus 1.

fourier_periods

List of values to use in creating fourier series as features. Default of NULL automatically choosesthese values based on the date_type.

lag_periods

List of values to use in creating lag features. Default of NULL automatically chooses these valuesbased on date_type.

rolling_window_periods

List of values to use in creating rolling window features. Default of NULL automaticallychooses these values based on date_type.

recipes_to_run

List of recipes to run on multivariate models that can run different recipes. A value of NULL runsall recipes, but only runs the R1 recipe for weekly and daily date types. A value of "all" runs all recipes, regardlessof date type. A list like c("R1") or c("R2") would only run models with the R1 or R2 recipe.

multistep_horizon

Use a multistep horizon approach when training multivariate models with R1 recipe.

Value

No return object. Feature engineered data is written to disk based on the output locations provided inset_run_info().

Examples

data_tbl <- timetk::m4_monthly %>%  dplyr::rename(Date = date) %>%  dplyr::mutate(id = as.character(id)) %>%  dplyr::filter(    Date >= "2013-01-01",    Date <= "2015-06-01"  )run_info <- set_run_info()prep_data(run_info,  input_data = data_tbl,  combo_variables = c("id"),  target_variable = "value",  date_type = "month",  forecast_horizon = 3,  recipes_to_run = "R1")

Prep Models

Description

Preps various aspects of run before training models. Things like train/testsplits, creating hyperparameters, etc.

Usage

prep_models(  run_info,  back_test_scenarios = NULL,  back_test_spacing = NULL,  models_to_run = NULL,  models_not_to_run = NULL,  run_ensemble_models = TRUE,  pca = NULL,  num_hyperparameters = 10,  seasonal_period = NULL,  seed = 123)

Arguments

run_info

Run info using theset_run_info() function.

back_test_scenarios

Number of specific back test folds to run whendetermining the best model. Default of NULL will automatically choosethe number of back tests to run based on historical data size,which tries to always use a minimum of 80% of the data when training a model.

back_test_spacing

Number of periods to move back for each backtest scenario. Default of NULL moves back 1 period at a time for year,quarter, and month data. Moves back 4 for week and 7 for day data.

models_to_run

List of models to run. Default of NULL runs all models.

models_not_to_run

List of models not to run, overrides values inmodels_to_run. Default of NULL doesn't turn off any model.

run_ensemble_models

If TRUE, prep for ensemble models.

pca

If TRUE, run principle component analysis on any lagged featuresto speed up model run time. Default of NULL runs PCA on day and weekdate types across all local multivariate models, and also for global modelsacross all date types.

num_hyperparameters

Number of hyperparameter combinations to testout on validation data for model tuning.

seasonal_period

List of numbers to be used for seasonal periods in specific univariate models like tbats.

seed

Set seed for random number generator. Numeric value.

Value

Writes outputs related to model prep to disk.

Examples

data_tbl <- timetk::m4_monthly %>%  dplyr::rename(Date = date) %>%  dplyr::mutate(id = as.character(id)) %>%  dplyr::filter(    Date >= "2012-01-01",    Date <= "2015-06-01"  )run_info <- set_run_info()prep_data(run_info,  input_data = data_tbl,  combo_variables = c("id"),  target_variable = "value",  date_type = "month",  forecast_horizon = 3)prep_models(run_info,  models_to_run = c("arima", "ets", "glmnet"))

Print custom cubist model

Description

Print custom cubist model

Usage

## S3 method for class 'cubist_multistep'print(x, ...)

Value

Prints model info


Print fitted custom cubist model

Description

Print fitted custom cubist model

Usage

## S3 method for class 'cubist_multistep_fit_impl'print(x, ...)

Value

prints custom model


Print custom glmnet model

Description

Print custom glmnet model

Usage

## S3 method for class 'glmnet_multistep'print(x, ...)

Value

Prints model info


Print fitted custom glmnet model

Description

Print fitted custom glmnet model

Usage

## S3 method for class 'glmnet_multistep_fit_impl'print(x, ...)

Value

prints custom model


Print custom mars model

Description

Print custom mars model

Usage

## S3 method for class 'mars_multistep'print(x, ...)

Value

Prints model info


Print fitted custom mars model

Description

Print fitted custom mars model

Usage

## S3 method for class 'mars_multistep_fit_impl'print(x, ...)

Value

prints custom model


Print custom svm_poly model

Description

Print custom svm_poly model

Usage

## S3 method for class 'svm_poly_multistep'print(x, ...)

Value

Prints model info


Print fitted custom svm_poly model

Description

Print fitted custom svm_poly model

Usage

## S3 method for class 'svm_poly_multistep_fit_impl'print(x, ...)

Value

prints custom model


Print custom svm_rbf model

Description

Print custom svm_rbf model

Usage

## S3 method for class 'svm_rbf_multistep'print(x, ...)

Value

Prints model info


Print fitted custom svm_rbf model

Description

Print fitted custom svm_rbf model

Usage

## S3 method for class 'svm_rbf_multistep_fit_impl'print(x, ...)

Value

prints custom model


Print custom xgboost model

Description

Print custom xgboost model

Usage

## S3 method for class 'xgboost_multistep'print(x, ...)

Value

Prints model info


Print fitted custom xgboost model

Description

Print fitted custom xgboost model

Usage

## S3 method for class 'xgboost_multistep_fit_impl'print(x, ...)

Value

prints custom model


Set up finnts submission

Description

Creates list object of information helpful in logging informationabout your run.

Usage

set_run_info(  experiment_name = "finn_fcst",  run_name = "finn_fcst",  storage_object = NULL,  path = NULL,  data_output = "csv",  object_output = "rds",  add_unique_id = TRUE)

Arguments

experiment_name

Name used to group similar runs under asingle experiment name.

run_name

Name to distinguish one run of Finn from another.The current time in UTC is appended to the run name to ensurea unique run name is created.

storage_object

Used to store outputs during a run to otherstorage services in Azure. Could be a storage container object fromthe 'AzureStor' package to connect to ADLS blob storage or aOneDrive/SharePoint object from the 'Microsoft365R' package to connectto a OneDrive folder or SharePoint site. Default of NULL will save outputsto the local file system.

path

String showing what file path the outputs should be written to.Default of NULL will write the outputs to a temporary directory within R,which will delete itself after the R session closes.

data_output

String value describing the file type for data outputs.Default will write data frame outputs as csv files. The other optionof 'parquet' will instead write parquet files.

object_output

String value describing the file type for objectoutputs. Default will write object outputs like trained models asrds files. The other option of 'qs' will instead serialize R objectsas qs files by using the 'qs' package.

add_unique_id

Add a unique id to end of run_name based on submission time.Set to FALSE to supply your own unique run name, which is helpful inmultistage ML pipelines.

Value

A list of run information

Examples

run_info <- set_run_info(  experiment_name = "test_exp",  run_name = "test_run_1")

SVM-POLY Multistep Horizon

Description

SVM-POLY Multistep Horizon

Usage

svm_poly_multistep(  mode = "regression",  cost = NULL,  degree = NULL,  scale_factor = NULL,  margin = NULL,  lag_periods = NULL,  external_regressors = NULL,  forecast_horizon = NULL,  selected_features = NULL)

Arguments

mode

A single character string for the type of model.The only possible value for this model is "regression".

cost

A positive number for the cost of predictinga sample within or on the wrong side of the margin.

degree

A positive number for polynomial degree.

scale_factor

A positive number for the polynomialscaling factor.

margin

A positive number for the epsilon in the SVMinsensitive loss function

lag_periods

lag periods

external_regressors

external regressors

forecast_horizon

forecast horizon

selected_features

selected features

Value

Get Multistep Horizon SVM-POLY model


Bridge SVM-POLY Multistep Modeling function

Description

Bridge SVM-POLY Multistep Modeling function

Usage

svm_poly_multistep_fit_impl(  x,  y,  C = double(1),  degree = integer(1),  scale = double(1),  epsilon = double(1),  lag_periods = NULL,  external_regressors = NULL,  forecast_horizon = NULL,  selected_features = NULL)

Arguments

x

A dataframe of xreg (exogenous regressors)

y

A numeric vector of values to fit

C

A positive number for the cost of predictinga sample within or on the wrong side of the margin.

degree

A positive number for polynomial degree.

scale

A positive number for the polynomialscaling factor.

epsilon

A positive number for the epsilon in the SVMinsensitive loss function

lag_periods

lag periods

external_regressors

external regressors

forecast_horizon

forecast horizon

selected_features

selected features


Bridge prediction Function for SVM-POLY Multistep Horizon Models

Description

Bridge prediction Function for SVM-POLY Multistep Horizon Models

Usage

svm_poly_multistep_predict_impl(object, new_data, ...)

Arguments

object

model object

new_data

input data to predict

...

Additionalparsnip-related options, depending on thevalue oftype. Arguments to the underlying model's predictionfunction cannot be passed here (use theopts argument instead).Possible arguments are:

  • interval: fortype equal to"survival" or"quantile", shouldinterval estimates be added, if available? Options are"none"and"confidence".

  • level: fortype equal to"conf_int","pred_int", or"survival",this is the parameter for the tail area of the intervals(e.g. confidence level for confidence intervals).Default value is0.95.

  • std_error: fortype equal to"conf_int" or"pred_int", addthe standard error of fit or prediction (on the scale of thelinear predictors). Default value isFALSE.

  • quantile: fortype equal toquantile, the quantiles of thedistribution. Default is(1:9)/10.

  • eval_time: fortype equal to"survival" or"hazard", thetime points at which the survival probability or hazard is estimated.

Value

predictions


SVM-RBF Multistep Horizon

Description

SVM-RBF Multistep Horizon

Usage

svm_rbf_multistep(  mode = "regression",  cost = NULL,  rbf_sigma = NULL,  margin = NULL,  lag_periods = NULL,  external_regressors = NULL,  forecast_horizon = NULL,  selected_features = NULL)

Arguments

mode

A single character string for the type of model.The only possible value for this model is "regression".

cost

A positive number for the cost of predictinga sample within or on the wrong side of the margin.

rbf_sigma

A positive number for radial basis function.

margin

A positive number for the epsilon in the SVMinsensitive loss function.

lag_periods

lag periods

external_regressors

external regressors

forecast_horizon

forecast horizon

selected_features

selected features

Value

Get Multistep Horizon SVM-RBF model


Bridge SVM-RBF Multistep Modeling function

Description

Bridge SVM-RBF Multistep Modeling function

Usage

svm_rbf_multistep_fit_impl(  x,  y,  C = double(1),  sigma = integer(1),  epsilon = double(1),  lag_periods = NULL,  external_regressors = NULL,  forecast_horizon = NULL,  selected_features = NULL)

Arguments

x

A dataframe of xreg (exogenous regressors)

y

A numeric vector of values to fit

C

A positive number for the cost of predictinga sample within or on the wrong side of the margin.

sigma

A positive number for radial basis function.

epsilon

A positive number for the epsilon in the SVMinsensitive loss function

lag_periods

lag periods

external_regressors

external regressors

forecast_horizon

forecast horizon

selected_features

selected features


Bridge prediction Function for SVM-RBF Multistep Horizon Models

Description

Bridge prediction Function for SVM-RBF Multistep Horizon Models

Usage

svm_rbf_multistep_predict_impl(object, new_data, ...)

Arguments

object

model object

new_data

input data to predict

...

Additionalparsnip-related options, depending on thevalue oftype. Arguments to the underlying model's predictionfunction cannot be passed here (use theopts argument instead).Possible arguments are:

  • interval: fortype equal to"survival" or"quantile", shouldinterval estimates be added, if available? Options are"none"and"confidence".

  • level: fortype equal to"conf_int","pred_int", or"survival",this is the parameter for the tail area of the intervals(e.g. confidence level for confidence intervals).Default value is0.95.

  • std_error: fortype equal to"conf_int" or"pred_int", addthe standard error of fit or prediction (on the scale of thelinear predictors). Default value isFALSE.

  • quantile: fortype equal toquantile, the quantiles of thedistribution. Default is(1:9)/10.

  • eval_time: fortype equal to"survival" or"hazard", thetime points at which the survival probability or hazard is estimated.

Value

predictions


Train Individual Models

Description

Train Individual Models

Usage

train_models(  run_info,  run_global_models = FALSE,  run_local_models = TRUE,  global_model_recipes = c("R1"),  feature_selection = FALSE,  negative_forecast = FALSE,  parallel_processing = NULL,  inner_parallel = FALSE,  num_cores = NULL,  seed = 123)

Arguments

run_info

run info using theset_run_info() function

run_global_models

If TRUE, run multivariate models on the entire dataset (across all time series) as a global model. Can be override bymodels_not_to_run. Default of NULL runs global models for all date typesexcept week and day.

run_local_models

If TRUE, run models by individual time series aslocal models.

global_model_recipes

Recipes to use in global models.

feature_selection

Implement feature selection before model training

negative_forecast

If TRUE, allow forecasts to dip below zero.

parallel_processing

Default of NULL runs no parallel processing andforecasts each individual time series one after another. 'local_machine'leverages all cores on current machine Finn is running on. 'spark'runs time series in parallel on a spark cluster in Azure Databricks orAzure Synapse.

inner_parallel

Run components of forecast process inside a specifictime series in parallel. Can only be used if parallel_processing isset to NULL or 'spark'.

num_cores

Number of cores to run when parallel processing is set up.Used when running parallel computations on local machine or within Azure.Default of NULL uses total amount of cores on machine minus one. Can't begreater than number of cores on machine minus 1.

seed

Set seed for random number generator. Numeric value.

Value

trained model outputs are written to disk.

Examples

data_tbl <- timetk::m4_monthly %>%  dplyr::rename(Date = date) %>%  dplyr::mutate(id = as.character(id)) %>%  dplyr::filter(    Date >= "2013-01-01",    Date <= "2015-06-01"  )run_info <- set_run_info()prep_data(run_info,  input_data = data_tbl,  combo_variables = c("id"),  target_variable = "value",  date_type = "month",  forecast_horizon = 3)prep_models(run_info,  models_to_run = c("arima", "glmnet"),  num_hyperparameters = 2,  back_test_scenarios = 6,  run_ensemble_models = FALSE)train_models(run_info)

Translate custom cubist model

Description

Translate custom cubist model

Usage

## S3 method for class 'cubist_multistep'translate(x, engine = x$engine, ...)

Value

translated model


Translate custom glmnet model

Description

Translate custom glmnet model

Usage

## S3 method for class 'glmnet_multistep'translate(x, engine = x$engine, ...)

Value

translated model


Translate custom mars model

Description

Translate custom mars model

Usage

## S3 method for class 'mars_multistep'translate(x, engine = x$engine, ...)

Value

translated model


Translate custom svm_poly model

Description

Translate custom svm_poly model

Usage

## S3 method for class 'svm_poly_multistep'translate(x, engine = x$engine, ...)

Value

translated model


Translate custom svm_rbf model

Description

Translate custom svm_rbf model

Usage

## S3 method for class 'svm_rbf_multistep'translate(x, engine = x$engine, ...)

Value

translated model


Translate custom xgboost model

Description

Translate custom xgboost model

Usage

## S3 method for class 'xgboost_multistep'translate(x, engine = x$engine, ...)

Value

translated model


Update parameter in custom cubist model

Description

Update parameter in custom cubist model

Usage

## S3 method for class 'cubist_multistep'update(  object,  parameters = NULL,  committees = NULL,  neighbors = NULL,  max_rules = NULL,  lag_periods = NULL,  external_regressors = NULL,  forecast_horizon = NULL,  selected_features = NULL,  fresh = FALSE,  ...)

Arguments

object

model object

parameters

parameters

committees

committees

neighbors

neighbors

max_rules

max rules

lag_periods

lag periods

external_regressors

external regressors

forecast_horizon

forecast horizon

selected_features

selected features

fresh

fresh

...

extra args passed to cubist

Value

Updated model


Update parameter in custom glmnet model

Description

Update parameter in custom glmnet model

Usage

## S3 method for class 'glmnet_multistep'update(  object,  parameters = NULL,  mixture = NULL,  penalty = NULL,  lag_periods = NULL,  external_regressors = NULL,  forecast_horizon = NULL,  selected_features = NULL,  fresh = FALSE,  ...)

Arguments

object

model object

parameters

parameters

mixture

mixture

penalty

penalty

lag_periods

lag periods

external_regressors

external regressors

forecast_horizon

forecast horizon

selected_features

selected features

fresh

fresh

...

extra args passed to glmnet

Value

Updated model


Update parameter in custom mars model

Description

Update parameter in custom mars model

Usage

## S3 method for class 'mars_multistep'update(  object,  parameters = NULL,  num_terms = NULL,  prod_degree = NULL,  prune_method = NULL,  lag_periods = NULL,  external_regressors = NULL,  forecast_horizon = NULL,  selected_features = NULL,  fresh = FALSE,  ...)

Arguments

object

model object

parameters

parameters

num_terms

The number of features that will be retained inthe final model, including the intercept.

prod_degree

The highest possible interaction degree.

prune_method

The pruning method.

lag_periods

lag periods

external_regressors

external regressors

forecast_horizon

forecast horizon

selected_features

selected features

fresh

fresh

...

extra args passed to mars

Value

Updated model


Update parameter in custom svm_poly model

Description

Update parameter in custom svm_poly model

Usage

## S3 method for class 'svm_poly_multistep'update(  object,  parameters = NULL,  cost = NULL,  degree = NULL,  scale_factor = NULL,  margin = NULL,  lag_periods = NULL,  external_regressors = NULL,  forecast_horizon = NULL,  selected_features = NULL,  fresh = FALSE,  ...)

Arguments

object

model object

parameters

parameters

cost

A positive number for the cost of predictinga sample within or on the wrong side of the margin.

degree

A positive number for polynomial degree.

scale_factor

A positive number for the polynomialscaling factor.

margin

A positive number for the epsilon in the SVMinsensitive loss function

lag_periods

lag periods

external_regressors

external regressors

forecast_horizon

forecast horizon

selected_features

selected features

fresh

fresh

...

extra args passed to svm_poly

Value

Updated model


Update parameter in custom svm_rbf model

Description

Update parameter in custom svm_rbf model

Usage

## S3 method for class 'svm_rbf_multistep'update(  object,  parameters = NULL,  cost = NULL,  rbf_sigma = NULL,  margin = NULL,  lag_periods = NULL,  external_regressors = NULL,  forecast_horizon = NULL,  selected_features = NULL,  fresh = FALSE,  ...)

Arguments

object

model object

parameters

parameters

cost

A positive number for the cost of predictinga sample within or on the wrong side of the margin.

rbf_sigma

A positive number for radial basis function.

margin

A positive number for the epsilon in the SVMinsensitive loss function.

lag_periods

lag periods

external_regressors

external regressors

forecast_horizon

forecast horizon

selected_features

selected features

fresh

fresh

...

extra args passed to svm_rbf

Value

Updated model


Update parameter in custom xgboost model

Description

Update parameter in custom xgboost model

Usage

## S3 method for class 'xgboost_multistep'update(  object,  parameters = NULL,  mtry = NULL,  trees = NULL,  min_n = NULL,  tree_depth = NULL,  learn_rate = NULL,  loss_reduction = NULL,  sample_size = NULL,  stop_iter = NULL,  lag_periods = NULL,  external_regressors = NULL,  forecast_horizon = NULL,  selected_features = NULL,  fresh = FALSE,  ...)

Arguments

object

model object

parameters

parameters

mtry

mtry

trees

trees

min_n

min_n

tree_depth

tree depth

learn_rate

learn rate

loss_reduction

loss reduction

sample_size

number for the number (or proportion) of data that is exposed to the fitting routine.

stop_iter

The number of iterations without improvement before stopping

lag_periods

lag periods

external_regressors

external regressors

forecast_horizon

forecast horizon

selected_features

selected features

fresh

fresh

...

extra args passed to xgboost

Value

Updated model


XGBOOST Multistep Horizon

Description

XGBOOST Multistep Horizon

Usage

xgboost_multistep(  mode = "regression",  mtry = NULL,  trees = NULL,  min_n = NULL,  tree_depth = NULL,  learn_rate = NULL,  loss_reduction = NULL,  sample_size = NULL,  stop_iter = NULL,  lag_periods = NULL,  external_regressors = NULL,  forecast_horizon = NULL,  selected_features = NULL)

Arguments

mode

A single character string for the type of model.The only possible value for this model is "regression".

mtry

mtry

trees

trees

min_n

min_n

tree_depth

tree depth

learn_rate

learn rate

loss_reduction

loss reduction

sample_size

number for the number (or proportion) of data that is exposed to the fitting routine.

stop_iter

The number of iterations without improvement before stopping

lag_periods

lag periods

external_regressors

external regressors

forecast_horizon

forecast horizon

selected_features

selected features

Value

Get Multistep Horizon XGBoost model


Bridge XGBOOST Multistep Modeling function

Description

Bridge XGBOOST Multistep Modeling function

Usage

xgboost_multistep_fit_impl(  x,  y,  max_depth = 6,  nrounds = 15,  eta = 0.3,  colsample_bytree = NULL,  colsample_bynode = NULL,  min_child_weight = 1,  gamma = 0,  subsample = 1,  validation = 0,  early_stop = NULL,  lag_periods = NULL,  external_regressors = NULL,  forecast_horizon = NULL,  selected_features = NULL,  ...)

Arguments

x

A dataframe of xreg (exogenous regressors)

y

A numeric vector of values to fit

max_depth

An integer for the maximum depth of the tree.

nrounds

An integer for the number of boosting iterations.

eta

A numeric value between zero and one to control the learning rate.

colsample_bytree

Subsampling proportion of columns.

colsample_bynode

Subsampling proportion of columns for each nodewithin each tree. See thecounts argument below. The default uses allcolumns.

min_child_weight

A numeric value for the minimum sum of instanceweights needed in a child to continue to split.

gamma

A number for the minimum loss reduction required to make afurther partition on a leaf node of the tree

subsample

Subsampling proportion of rows.

validation

A positive number. If on⁠[0, 1)⁠ the value,validationis a random proportion of data inx andy that are used for performanceassessment and potential early stopping. If 1 or greater, it is thenumberof training set samples use for these purposes.

early_stop

An integer orNULL. If notNULL, it is the number oftraining iterations without improvement before stopping. Ifvalidation isused, performance is base on the validation set; otherwise the training setis used.

lag_periods

lag periods

external_regressors

external regressors

forecast_horizon

forecast horizon

selected_features

selected features

...

Additional arguments passed toxgboost::xgb.train


Bridge prediction Function for XGBOOST Multistep Horizon Models

Description

Bridge prediction Function for XGBOOST Multistep Horizon Models

Usage

xgboost_multistep_predict_impl(object, new_data, ...)

Arguments

object

model object

new_data

input data to predict

...

Additional arguments passed topredict.xgb.Booster()

Value

predictions


[8]ページ先頭

©2009-2025 Movatter.jp