Movatterモバイル変換


[0]ホーム

URL:


deconvolveR: Empirical Bayes Estimation Strategies

Empirical Bayes methods for learning prior distributions from data. An unknown prior distribution (g) has yielded (unobservable) parameters, each of which produces a data point from a parametric exponential family (f). The goal is to estimate the unknown prior ("g-modeling") by deconvolution and Empirical Bayes methods. Details and examples are in the paper by Narasimhan and Efron (2020, <doi:10.18637/jss.v094.i11>).

Version:1.2-1
Depends:R (≥ 3.0)
Imports:splines, stats
Suggests:cowplot,ggplot2,knitr,rmarkdown
Published:2020-08-30
DOI:10.32614/CRAN.package.deconvolveR
Author:Bradley Efron [aut], Balasubramanian Narasimhan [aut, cre]
Maintainer:Balasubramanian Narasimhan <naras at stat.Stanford.EDU>
BugReports:https://github.com/bnaras/deconvolveR/issues
License:GPL-2 |GPL-3 [expanded from: GPL (≥ 2)]
URL:https://bnaras.github.io/deconvolveR/
NeedsCompilation:no
Citation:deconvolveR citation info
Materials:README,NEWS
CRAN checks:deconvolveR results

Documentation:

Reference manual:deconvolveR.html ,deconvolveR.pdf
Vignettes:Empirical Bayes Deconvolution (source,R code)

Downloads:

Package source: deconvolveR_1.2-1.tar.gz
Windows binaries: r-devel:deconvolveR_1.2-1.zip, r-release:deconvolveR_1.2-1.zip, r-oldrel:deconvolveR_1.2-1.zip
macOS binaries: r-release (arm64):deconvolveR_1.2-1.tgz, r-oldrel (arm64):deconvolveR_1.2-1.tgz, r-release (x86_64):deconvolveR_1.2-1.tgz, r-oldrel (x86_64):deconvolveR_1.2-1.tgz
Old sources: deconvolveR archive

Reverse dependencies:

Reverse imports:ebnm,REBayes

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=deconvolveRto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp