Movatterモバイル変換


[0]ホーム

URL:


flevr: Flexible, Ensemble-Based Variable Selection with PotentiallyMissing Data

Perform variable selection in settings with possibly missing data based on extrinsic (algorithm-specific) and intrinsic (population-level) variable importance. Uses a Super Learner ensemble to estimate the underlying prediction functions that give rise to estimates of variable importance. For more information about the methods, please see Williamson and Huang (2024) <doi:10.1515/ijb-2023-0059>.

Version:0.0.5
Depends:R (≥ 3.1.0)
Imports:SuperLearner,dplyr,magrittr,tibble,caret,mvtnorm,kernlab,rlang,ranger
Suggests:vimp,stabs,testthat,knitr,rmarkdown,mice,xgboost,glmnet,polspline
Published:2025-12-06
DOI:10.32614/CRAN.package.flevr
Author:Brian D. WilliamsonORCID iD [aut, cre]
Maintainer:Brian D. Williamson <brian.d.williamson at kp.org>
BugReports:https://github.com/bdwilliamson/flevr/issues
License:MIT + fileLICENSE
URL:https://github.com/bdwilliamson/flevr
NeedsCompilation:no
Materials:README,NEWS
CRAN checks:flevr results

Documentation:

Reference manual:flevr.html ,flevr.pdf
Vignettes:Extrinsic variable selection (source,R code)
Intrinsic variable selection (source,R code)
Introduction to 'flevr' (source,R code)

Downloads:

Package source: flevr_0.0.5.tar.gz
Windows binaries: r-devel:flevr_0.0.5.zip, r-release:flevr_0.0.5.zip, r-oldrel:flevr_0.0.5.zip
macOS binaries: r-release (arm64):flevr_0.0.5.tgz, r-oldrel (arm64):flevr_0.0.5.tgz, r-release (x86_64):flevr_0.0.5.tgz, r-oldrel (x86_64):flevr_0.0.5.tgz
Old sources: flevr archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=flevrto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp