Movatterモバイル変換


[0]ホーム

URL:


RLoptimal: Optimal Adaptive Allocation Using Deep Reinforcement Learning

An implementation to compute an optimal adaptive allocation rule using deep reinforcement learning in a dose-response study (Matsuura et al. (2022) <doi:10.1002/sim.9247>). The adaptive allocation rule can directly optimize a performance metric, such as power, accuracy of the estimated target dose, or mean absolute error over the estimated dose-response curve.

Version:1.2.2
Imports:DoseFinding,glue,R6,reticulate, stats, utils,zip
Suggests:knitr,rmarkdown,testthat (≥ 3.0.0)
Published:2025-10-02
DOI:10.32614/CRAN.package.RLoptimal
Author:Kentaro MatsuuraORCID iD [aut, cre, cph], Koji Makiyama [aut, ctb]
Maintainer:Kentaro Matsuura <matsuurakentaro55 at gmail.com>
BugReports:https://github.com/MatsuuraKentaro/RLoptimal/issues
License:MIT + fileLICENSE
URL:https://github.com/MatsuuraKentaro/RLoptimal
NeedsCompilation:no
Language:en-US
Materials:README,NEWS
CRAN checks:RLoptimal results

Documentation:

Reference manual:RLoptimal.html ,RLoptimal.pdf
Vignettes:Optimal Adaptive Allocation Using Deep Reinforcement Learning (source,R code)

Downloads:

Package source: RLoptimal_1.2.2.tar.gz
Windows binaries: r-devel:RLoptimal_1.2.2.zip, r-release:RLoptimal_1.2.2.zip, r-oldrel:RLoptimal_1.2.2.zip
macOS binaries: r-release (arm64):RLoptimal_1.2.2.tgz, r-oldrel (arm64):RLoptimal_1.2.2.tgz, r-release (x86_64):RLoptimal_1.2.2.tgz, r-oldrel (x86_64):RLoptimal_1.2.2.tgz
Old sources: RLoptimal archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=RLoptimalto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp