| Title: | Quadratic Programming Solver using the 'OSQP' Library |
| Version: | 0.6.3.3 |
| Date: | 2024-06-07 |
| Copyright: | file COPYRIGHT |
| Description: | Provides bindings to the 'OSQP' solver. The 'OSQP' solver is a numerical optimization package or solving convex quadratic programs written in 'C' and based on the alternating direction method of multipliers. See <doi:10.48550/arXiv.1711.08013> for details. |
| License: | Apache License 2.0 | file LICENSE |
| SystemRequirements: | C++17 |
| Imports: | Rcpp (≥ 0.12.14), methods, Matrix (≥ 1.6.1), R6 |
| LinkingTo: | Rcpp |
| RoxygenNote: | 7.2.3 |
| Collate: | 'RcppExports.R' 'osqp-package.R' 'sparse.R' 'solve.R' 'osqp.R''params.R' |
| NeedsCompilation: | yes |
| Suggests: | slam, testthat |
| Encoding: | UTF-8 |
| BugReports: | https://github.com/osqp/osqp-r/issues |
| URL: | https://osqp.org |
| Packaged: | 2024-06-08 03:42:50 UTC; naras |
| Author: | Bartolomeo Stellato [aut, ctb, cph], Goran Banjac [aut, ctb, cph], Paul Goulart [aut, ctb, cph], Stephen Boyd [aut, ctb, cph], Eric Anderson [ctb], Vineet Bansal [aut, ctb], Balasubramanian Narasimhan [cre, ctb] |
| Maintainer: | Balasubramanian Narasimhan <naras@stanford.edu> |
| Repository: | CRAN |
| Date/Publication: | 2024-06-08 05:30:01 UTC |
OSQP Solver object
Description
OSQP Solver object
Usage
osqp(P = NULL, q = NULL, A = NULL, l = NULL, u = NULL, pars = osqpSettings())Arguments
P,A | sparse matrices of class dgCMatrix or coercible into such, with P positive semidefinite. (In the interest of efficiency, only the upper triangular part of P is used) |
q,l,u | Numeric vectors, with possibly infinite elements in l and u |
pars | list with optimization parameters, conveniently set with the function |
Details
Allows one to solve a parametricproblem with for example warm starts between updates of the parameter, c.f. the examples.The object returned byosqp contains several methods which can be used to either update/get details of theproblem, modify the optimization settings or attempt to solve the problem.
Value
An R6-object of class "osqp_model" with methods defined which can be furtherused to solve the problem with updated settings / parameters.
Usage
model = osqp(P=NULL, q=NULL, A=NULL, l=NULL, u=NULL, pars=osqpSettings())model$Solve()model$Update(q = NULL, l = NULL, u = NULL, Px = NULL, Px_idx = NULL, Ax = NULL, Ax_idx = NULL)model$GetParams()model$GetDims()model$UpdateSettings(newPars = list())model$GetData(element = c("P", "q", "A", "l", "u"))model$WarmStart(x=NULL, y=NULL)print(model)Method Arguments
- element
a string with the name of one of the matrices / vectors of the problem
- newPars
list with optimization parameters
See Also
Examples
## example, adapted from OSQP documentationlibrary(Matrix)P <- Matrix(c(11., 0., 0., 0.), 2, 2, sparse = TRUE)q <- c(3., 4.)A <- Matrix(c(-1., 0., -1., 2., 3., 0., -1., -3., 5., 4.) , 5, 2, sparse = TRUE)u <- c(0., 0., -15., 100., 80)l <- rep_len(-Inf, 5)settings <- osqpSettings(verbose = FALSE)model <- osqp(P, q, A, l, u, settings)# Solveres <- model$Solve()# Define new vectorq_new <- c(10., 20.)# Update model and solve againmodel$Update(q = q_new)res <- model$Solve()Settings for OSQP
Description
For further details please consult the OSQP documentation:https://osqp.org/
Usage
osqpSettings( rho = 0.1, sigma = 1e-06, max_iter = 4000L, eps_abs = 0.001, eps_rel = 0.001, eps_prim_inf = 1e-04, eps_dual_inf = 1e-04, alpha = 1.6, linsys_solver = c(QDLDL_SOLVER = 0L), delta = 1e-06, polish = FALSE, polish_refine_iter = 3L, verbose = TRUE, scaled_termination = FALSE, check_termination = 25L, warm_start = TRUE, scaling = 10L, adaptive_rho = 1L, adaptive_rho_interval = 0L, adaptive_rho_tolerance = 5, adaptive_rho_fraction = 0.4, time_limit = 0)Arguments
rho | ADMM step rho |
sigma | ADMM step sigma |
max_iter | maximum iterations |
eps_abs | absolute convergence tolerance |
eps_rel | relative convergence tolerance |
eps_prim_inf | primal infeasibility tolerance |
eps_dual_inf | dual infeasibility tolerance |
alpha | relaxation parameter |
linsys_solver | which linear systems solver to use, 0=QDLDL, 1=MKL Pardiso |
delta | regularization parameter for polish |
polish | boolean, polish ADMM solution |
polish_refine_iter | iterative refinement steps in polish |
verbose | boolean, write out progress |
scaled_termination | boolean, use scaled termination criteria |
check_termination | integer, check termination interval. If 0, termination checking is disabled |
warm_start | boolean, warm start |
scaling | heuristic data scaling iterations. If 0, scaling disabled |
adaptive_rho | cboolean, is rho step size adaptive? |
adaptive_rho_interval | Number of iterations between rho adaptations rho. If 0, it is automatic |
adaptive_rho_tolerance | Tolerance X for adapting rho. The new rho has to be X times larger or 1/X times smaller than the current one to trigger a new factorization |
adaptive_rho_fraction | Interval for adapting rho (fraction of the setup time) |
time_limit | run time limit with 0 indicating no limit |
Sparse Quadratic Programming Solver
Description
Solves
arg\min_x 0.5 x'P x + q'x
s.t.
l_i < (A x)_i < u_i
for real matrices P (nxn, positive semidefinite) and A (mxn) with m number of constraints
Usage
solve_osqp( P = NULL, q = NULL, A = NULL, l = NULL, u = NULL, pars = osqpSettings())Arguments
P,A | sparse matrices of class dgCMatrix or coercible into such, with P positive semidefinite.Only the upper triangular part of P will be used. |
q,l,u | Numeric vectors, with possibly infinite elements in l and u |
pars | list with optimization parameters, conveniently set with the function |
Value
A list with elements x (the primal solution), y (the dual solution), prim_inf_cert,dual_inf_cert, and info.
References
Stellato, B., Banjac, G., Goulart, P., Bemporad, A., Boyd and S. (2018).“OSQP: An Operator Splitting Solver for Quadratic Programs.”ArXiv e-prints.1711.08013.
See Also
osqp. The underlying OSQP documentation:https://osqp.org/
Examples
library(osqp)## example, adapted from OSQP documentationlibrary(Matrix)P <- Matrix(c(11., 0., 0., 0.), 2, 2, sparse = TRUE)q <- c(3., 4.)A <- Matrix(c(-1., 0., -1., 2., 3., 0., -1., -3., 5., 4.) , 5, 2, sparse = TRUE)u <- c(0., 0., -15., 100., 80)l <- rep_len(-Inf, 5)settings <- osqpSettings(verbose = TRUE)# Solve with OSQPres <- solve_osqp(P, q, A, l, u, settings)res$x