Movatterモバイル変換


[0]ホーム

URL:


autotab: Variational Autoencoders for Heterogeneous Tabular Data

Build and train a variational autoencoder (VAE) for mixed-type tabular data (continuous, binary, categorical). Models are implemented using 'TensorFlow' and 'Keras' via the 'reticulate' interface, enabling reproducible VAE training for heterogeneous tabular datasets.

Version:0.1.1
Depends:R (≥ 4.1)
Imports:keras,magrittr,R6,reticulate,tensorflow
Suggests:caret
Published:2025-11-24
DOI:10.32614/CRAN.package.autotab
Author:Sarah Milligan [aut, cre]
Maintainer:Sarah Milligan <slm1999 at bu.edu>
BugReports:https://github.com/SarahMilligan-hub/AutoTab/issues
License:MIT + fileLICENSE
URL:https://github.com/SarahMilligan-hub/AutoTab
NeedsCompilation:no
SystemRequirements:Python (>= 3.8); TensorFlow (>= 2.10); Keras;TensorFlow Addons
Materials:README
CRAN checks:autotab results

Documentation:

Reference manual:autotab.html ,autotab.pdf

Downloads:

Package source: autotab_0.1.1.tar.gz
Windows binaries: r-devel:autotab_0.1.1.zip, r-release:autotab_0.1.1.zip, r-oldrel:autotab_0.1.1.zip
macOS binaries: r-release (arm64):autotab_0.1.1.tgz, r-oldrel (arm64):autotab_0.1.1.tgz, r-release (x86_64):autotab_0.1.1.tgz, r-oldrel (x86_64):autotab_0.1.1.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=autotabto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp