Basic implementation of a Gibbs sampler for a Chinese Restaurant Process along with some visual aids to help understand how the sampling works. This is developed as part of a postgraduate school project for an Advanced Bayesian Nonparametric course. It is inspired by Tamara Broderick's presentation on Nonparametric Bayesian statistics given at the Simons institute.
| Version: | 0.0.1 |
| Imports: | mvtnorm,progress |
| Published: | 2021-11-29 |
| DOI: | 10.32614/CRAN.package.nonparametric.bayes |
| Author: | Erik-Cristian Seulean |
| Maintainer: | Erik-Cristian Seulean <erikseulean at gmail.com> |
| License: | MIT + fileLICENSE |
| NeedsCompilation: | no |
| Materials: | README |
| CRAN checks: | nonparametric.bayes results |
| Reference manual: | nonparametric.bayes.html ,nonparametric.bayes.pdf |
| Package source: | nonparametric.bayes_0.0.1.tar.gz |
| Windows binaries: | r-devel:nonparametric.bayes_0.0.1.zip, r-release:nonparametric.bayes_0.0.1.zip, r-oldrel:nonparametric.bayes_0.0.1.zip |
| macOS binaries: | r-release (arm64):nonparametric.bayes_0.0.1.tgz, r-oldrel (arm64):nonparametric.bayes_0.0.1.tgz, r-release (x86_64):nonparametric.bayes_0.0.1.tgz, r-oldrel (x86_64):nonparametric.bayes_0.0.1.tgz |
Please use the canonical formhttps://CRAN.R-project.org/package=nonparametric.bayesto link to this page.