Movatterモバイル変換


[0]ホーム

URL:


EHRmuse: Multi-Cohort Selection Bias Correction using IPW and AIPWMethods

Comprehensive toolkit for addressing selection bias in binary disease models across diverse non-probability samples, each with unique selection mechanisms. It utilizes Inverse Probability Weighting (IPW) and Augmented Inverse Probability Weighting (AIPW) methods to reduce selection bias effectively in multiple non-probability cohorts by integrating data from either individual-level or summary-level external sources. The package also provides a variety of variance estimation techniques. Please refer to Kundu et al. <doi:10.48550/arXiv.2412.00228>.

Version:0.0.2.2
Depends:R (≥ 4.0.0)
Imports:Formula,plotrix,dplyr (≥ 1.0.0),magrittr,MASS,nleqslv (≥ 3.3.2),xgboost (≥ 1.4.1),survey (≥ 4.1.0), stats, graphics,nnet (≥ 7.3-17)
Published:2025-07-08
DOI:10.32614/CRAN.package.EHRmuse
Author:Ritoban Kundu [aut], Michael Kleinsasser [cre]
Maintainer:Michael Kleinsasser <biostat-cran-manager at umich.edu>
BugReports:https://github.com/Ritoban1/EHRmuse/issues
License:GPL-2 |GPL-3 [expanded from: GPL (≥ 2)]
URL:https://github.com/Ritoban1/EHRmuse
NeedsCompilation:yes
SystemRequirements:GNU Scientific Library version >= 1.8
Citation:EHRmuse citation info
CRAN checks:EHRmuse results

Documentation:

Reference manual:EHRmuse.html ,EHRmuse.pdf

Downloads:

Package source: EHRmuse_0.0.2.2.tar.gz
Windows binaries: r-devel:EHRmuse_0.0.2.2.zip, r-release:EHRmuse_0.0.2.2.zip, r-oldrel:EHRmuse_0.0.2.2.zip
macOS binaries: r-release (arm64):EHRmuse_0.0.2.2.tgz, r-oldrel (arm64):EHRmuse_0.0.2.2.tgz, r-release (x86_64):EHRmuse_0.0.2.2.tgz, r-oldrel (x86_64):EHRmuse_0.0.2.2.tgz
Old sources: EHRmuse archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=EHRmuseto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp