Movatterモバイル変換


[0]ホーム

URL:


sentiment.ai: Simple Sentiment Analysis Using Deep Learning

Sentiment Analysis via deep learning and gradient boosting models with a lot of the underlying hassle taken care of to make the process as simple as possible. In addition to out-performing traditional, lexicon-based sentiment analysis (see <https://benwiseman.github.io/sentiment.ai/#Benchmarks>), it also allows the user to create embedding vectors for text which can be used in other analyses. GPU acceleration is supported on Windows and Linux.

Version:0.1.1
Depends:R (≥ 4.0.0)
Imports:data.table (≥ 1.12.8),jsonlite,reticulate (≥ 1.16),roperators (≥ 1.2.0), stats,tensorflow (≥ 2.2.0),tfhub (≥0.8.0), utils,xgboost
Suggests:rmarkdown,knitr,magrittr,microbenchmark,prettydoc,rappdirs,rstudioapi,text2vec (≥ 0.6)
Published:2022-03-19
DOI:10.32614/CRAN.package.sentiment.ai
Author:Ben Wiseman [cre, aut, ccp], Steven NydickORCID iD [aut], Tristan Wisner [aut], Fiona Lodge [ctb], Yu-Ann Wang [ctb], Veronica Ge [art], Korn Ferry Institute [fnd]
Maintainer:Ben Wiseman <benjamin.h.wiseman at gmail.com>
License:MIT + fileLICENSE
URL:https://benwiseman.github.io/sentiment.ai/,https://github.com/BenWiseman/sentiment.ai
NeedsCompilation:no
Materials:README,NEWS
In views:NaturalLanguageProcessing
CRAN checks:sentiment.ai results

Documentation:

Reference manual:sentiment.ai.html ,sentiment.ai.pdf
Vignettes:sentiment.ai (source,R code)

Downloads:

Package source: sentiment.ai_0.1.1.tar.gz
Windows binaries: r-devel:sentiment.ai_0.1.1.zip, r-release:sentiment.ai_0.1.1.zip, r-oldrel:sentiment.ai_0.1.1.zip
macOS binaries: r-release (arm64):sentiment.ai_0.1.1.tgz, r-oldrel (arm64):sentiment.ai_0.1.1.tgz, r-release (x86_64):sentiment.ai_0.1.1.tgz, r-oldrel (x86_64):sentiment.ai_0.1.1.tgz
Old sources: sentiment.ai archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=sentiment.aito link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp