Movatterモバイル変換


[0]ホーム

URL:


mlr3cluster

Package website:release |dev

Cluster analysis formlr3.

r-cmd-checkCRAN statusStackOverflowMattermost

mlr3cluster is an extension package for clusteranalysis within themlr3 ecosystem. Itis a successor of clustering capabilities ofmlr2.

Installation

Install the last release from CRAN:

install.packages("mlr3cluster")

Install the development version from GitHub:

# install.packages("pak")pak::pak("mlr-org/mlr3cluster")

Feature Overview

The current version ofmlr3cluster contains:

Also, the package is integrated withmlr3viz whichenables you to create great visualizations with just one line ofcode!

Cluster Analysis

Cluster Learners

KeyLabelPackages
clust.MBatchKMeansMini Batch K-MeansClusterR
clust.SimpleKMeansK-Means (Weka)RWeka
clust.agnesAgglomerative Hierarchical Clusteringcluster
clust.apAffinity Propagation Clusteringapcluster
clust.bicoBICO Clusteringstream
clust.birchBIRCH Clusteringstream
clust.cmeansFuzzy C-Means Clustering Learnere1071
clust.cobwebCobweb ClusteringRWeka
clust.dbscanDensity-Based Clusteringdbscan
clust.dbscan_fpcDensity-Based Clustering with fpcfpc
clust.dianaDivisive Hierarchical Clusteringcluster
clust.emExpectation-Maximization ClusteringRWeka
clust.fannyFuzzy Analysis Clusteringcluster
clust.featurelessFeatureless Clustering
clust.ffFarthest First ClusteringRWeka
clust.hclustAgglomerative Hierarchical Clusteringstats
clust.hdbscanHDBSCAN Clusteringdbscan
clust.kkmeansKernel K-Meanskernlab
clust.kmeansK-Meansstats,clue
clust.mclustGaussian Mixture Models Clusteringmclust
clust.meanshiftMean Shift ClusteringLPCM
clust.opticsOPTICS Clusteringdbscan
clust.pamPartitioning Around Medoidscluster
clust.xmeansX-meansRWeka

Cluster Measures

KeyLabelPackages
clust.chCalinski Harabaszfpc
clust.dunnDunnfpc
clust.silhouetteSilhouettecluster
clust.wssWithin Sum of Squaresfpc

Example

library(mlr3)library(mlr3cluster)task=tsk("usarrests")task#>#> ── <TaskClust> (50x4): US Arrests ──────────────────────────────────────────────#> • Target:#> • Properties: -#> • Features (4):#>   • int (2): Assault, UrbanPop#>   • dbl (2): Murder, Rapelearner=lrn("clust.kmeans")prediction= learner$train(task)$predict(task)measures=msrs(c("clust.wss","clust.silhouette"))prediction$score(measures, task)#>        clust.wss clust.silhouette#>     9.639903e+04     5.926554e-01

More Resources

Check out theblogpostfor a more detailed introduction to the package. Also,mlr3bookhas a section on clustering.

Future Plans

If you have any questions, feedback or ideas, feel free to open anissuehere.


[8]ページ先頭

©2009-2025 Movatter.jp