Movatterモバイル変換


[0]ホーム

URL:


rrscale: Robust Re-Scaling to Better Recover Latent Effects in Data

Non-linear transformations of data to better discover latent effects. Applies a sequence of three transformations (1) a Gaussianizing transformation, (2) a Z-score transformation, and (3) an outlier removal transformation. A publication describing the method has the following citation: Gregory J. Hunt, Mark A. Dane, James E. Korkola, Laura M. Heiser & Johann A. Gagnon-Bartsch (2020) "Automatic Transformation and Integration to Improve Visualization and Discovery of Latent Effects in Imaging Data", Journal of Computational and Graphical Statistics, <doi:10.1080/10618600.2020.1741379>.

Version:1.0
Depends:R (≥ 3.5.0)
Imports:DEoptim,nloptr,abind
Suggests:knitr,rmarkdown,testthat,ggplot2,reshape2
Published:2020-05-26
DOI:10.32614/CRAN.package.rrscale
Author:Gregory Hunt [aut, cre], Johann Gagnon-Bartsch [aut]
Maintainer:Gregory Hunt <ghunt at wm.edu>
License:GPL-3
NeedsCompilation:no
Citation:rrscale citation info
CRAN checks:rrscale results

Documentation:

Reference manual:rrscale.html ,rrscale.pdf
Vignettes:Ragged RR (source,R code)
Basic Rescaling (source,R code)

Downloads:

Package source: rrscale_1.0.tar.gz
Windows binaries: r-devel:rrscale_1.0.zip, r-release:rrscale_1.0.zip, r-oldrel:rrscale_1.0.zip
macOS binaries: r-release (arm64):rrscale_1.0.tgz, r-oldrel (arm64):rrscale_1.0.tgz, r-release (x86_64):rrscale_1.0.tgz, r-oldrel (x86_64):rrscale_1.0.tgz
Old sources: rrscale archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=rrscaleto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp