Movatterモバイル変換


[0]ホーム

URL:


neuralGAM: Interpretable Neural Network Based on Generalized AdditiveModels

Neural Additive Model framework based on Generalized Additive Models from Hastie & Tibshirani (1990, ISBN:9780412343902), which trains a different neural network to estimate the contribution of each feature to the response variable. The networks are trained independently leveraging the local scoring and backfitting algorithms to ensure that the Generalized Additive Model converges and it is additive. The resultant Neural Network is a highly accurate and interpretable deep learning model, which can be used for high-risk AI practices where decision-making should be based on accountable and interpretable algorithms.

Version:2.0.1
Imports:tensorflow,keras,ggplot2,magrittr,reticulate,formula.tools,matrixStats,patchwork,rlang
Suggests:covr,testthat (≥ 3.0.0),fs,withr
Published:2025-12-03
DOI:10.32614/CRAN.package.neuralGAM
Author:Ines Ortega-FernandezORCID iD [aut, cre, cph], Marta SesteloORCID iD [aut, cph]
Maintainer:Ines Ortega-Fernandez <iortega at gradiant.org>
BugReports:https://github.com/inesortega/neuralGAM/issues
License:MPL-2.0
URL:https://inesortega.github.io/neuralGAM/,https://github.com/inesortega/neuralGAM
NeedsCompilation:no
SystemRequirements:python (>= 3.10), keras (== 2.15), tensorflow (==2.15)
Materials:README,NEWS
CRAN checks:neuralGAM results

Documentation:

Reference manual:neuralGAM.html ,neuralGAM.pdf

Downloads:

Package source: neuralGAM_2.0.1.tar.gz
Windows binaries: r-devel:neuralGAM_2.0.1.zip, r-release:neuralGAM_2.0.1.zip, r-oldrel:neuralGAM_2.0.1.zip
macOS binaries: r-release (arm64):neuralGAM_2.0.1.tgz, r-oldrel (arm64):neuralGAM_2.0.1.tgz, r-release (x86_64):neuralGAM_2.0.1.tgz, r-oldrel (x86_64):neuralGAM_2.0.1.tgz
Old sources: neuralGAM archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=neuralGAMto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp