Movatterモバイル変換


[0]ホーム

URL:


plsmmLasso: Variable Selection and Inference for Partial SemiparametricLinear Mixed-Effects Model

Implements a partial linear semiparametric mixed-effects model (PLSMM) featuring a random intercept and applies a lasso penalty to both the fixed effects and the coefficients associated with the nonlinear function. The model also accommodates interactions between the nonlinear function and a grouping variable, allowing for the capture of group-specific nonlinearities. Nonlinear functions are modeled using a set of bases functions. Estimation is conducted using a penalized Expectation-Maximization algorithm, and the package offers flexibility in choosing between various information criteria for model selection. Post-selection inference is carried out using a debiasing method, while inference on the nonlinear functions employs a bootstrap approach.

Version:1.1.0
Imports:dplyr,ggplot2,glmnet,hdi,MASS,mvtnorm,rlang,scalreg, stats
Published:2024-06-04
DOI:10.32614/CRAN.package.plsmmLasso
Author:Sami LeonORCID iD [aut, cre, cph], Tong Tong WuORCID iD [ths]
Maintainer:Sami Leon <samileon at hotmail.fr>
BugReports:https://github.com/Sami-Leon/plsmmLasso/issues
License:GPL (≥ 3)
URL:https://github.com/Sami-Leon/plsmmLasso
NeedsCompilation:no
Materials:README,NEWS
CRAN checks:plsmmLasso results

Documentation:

Reference manual:plsmmLasso.html ,plsmmLasso.pdf

Downloads:

Package source: plsmmLasso_1.1.0.tar.gz
Windows binaries: r-devel:plsmmLasso_1.1.0.zip, r-release:plsmmLasso_1.1.0.zip, r-oldrel:plsmmLasso_1.1.0.zip
macOS binaries: r-release (arm64):plsmmLasso_1.1.0.tgz, r-oldrel (arm64):plsmmLasso_1.1.0.tgz, r-release (x86_64):plsmmLasso_1.1.0.tgz, r-oldrel (x86_64):plsmmLasso_1.1.0.tgz
Old sources: plsmmLasso archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=plsmmLassoto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp