Movatterモバイル変換


[0]ホーム

URL:


RLescalation: Optimal Dose Escalation Using Deep Reinforcement Learning

An implementation to compute an optimal dose escalation rule using deep reinforcement learning in phase I oncology trials (Matsuura et al. (2023) <doi:10.1080/10543406.2023.2170402>). The dose escalation rule can directly optimize the percentages of correct selection (PCS) of the maximum tolerated dose (MTD).

Version:1.0.3
Imports:glue,R6,nleqslv,reticulate, stats, utils,zip
Suggests:knitr,rmarkdown
Published:2025-10-07
DOI:10.32614/CRAN.package.RLescalation
Author:Kentaro MatsuuraORCID iD [aut, cre, cph]
Maintainer:Kentaro Matsuura <matsuurakentaro55 at gmail.com>
BugReports:https://github.com/MatsuuraKentaro/RLescalation/issues
License:MIT + fileLICENSE
URL:https://github.com/MatsuuraKentaro/RLescalation
NeedsCompilation:no
Language:en-US
Materials:README,NEWS
CRAN checks:RLescalation results

Documentation:

Reference manual:RLescalation.html ,RLescalation.pdf
Vignettes:Optimal Dose Escalation Using Deep Reinforcement Learning (source,R code)

Downloads:

Package source: RLescalation_1.0.3.tar.gz
Windows binaries: r-devel:RLescalation_1.0.3.zip, r-release:RLescalation_1.0.3.zip, r-oldrel:RLescalation_1.0.3.zip
macOS binaries: r-release (arm64):RLescalation_1.0.3.tgz, r-oldrel (arm64):RLescalation_1.0.3.tgz, r-release (x86_64):RLescalation_1.0.3.tgz, r-oldrel (x86_64):RLescalation_1.0.3.tgz
Old sources: RLescalation archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=RLescalationto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp