Movatterモバイル変換


[0]ホーム

URL:


PRROC: Precision-Recall and ROC Curves for Weighted and Unweighted Data

Computes the areas under the precision-recall (PR) and ROC curve for weighted (e.g., soft-labeled) and unweighted data. In contrast to other implementations, the interpolation between points of the PR curve is done by a non-linear piecewise function. In addition to the areas under the curves, the curves themselves can also be computed and plotted by a specific S3-method. References: Davis and Goadrich (2006) <doi:10.1145/1143844.1143874>; Keilwagen et al. (2014) <doi:10.1371/journal.pone.0092209>; Grau et al. (2015) <doi:10.1093/bioinformatics/btv153>.

Version:1.4
Depends:rlang
Suggests:testthat,ggplot2,ROCR
Published:2025-03-18
DOI:10.32614/CRAN.package.PRROC
Author:Jan Grau [aut, cre], Jens Keilwagen [aut]
Maintainer:Jan Grau <grau at informatik.uni-halle.de>
License:GPL-3
NeedsCompilation:no
Citation:PRROC citation info
CRAN checks:PRROC results

Documentation:

Reference manual:PRROC.html ,PRROC.pdf
Vignettes:PRROC: computing and visualizing precision-recall and receiver operating characteristic curves in R (source,R code)

Downloads:

Package source: PRROC_1.4.tar.gz
Windows binaries: r-devel:PRROC_1.4.zip, r-release:PRROC_1.4.zip, r-oldrel:PRROC_1.4.zip
macOS binaries: r-release (arm64):PRROC_1.4.tgz, r-oldrel (arm64):PRROC_1.4.tgz, r-release (x86_64):PRROC_1.4.tgz, r-oldrel (x86_64):PRROC_1.4.tgz
Old sources: PRROC archive

Reverse dependencies:

Reverse imports:biospear,dagHMM,DeepPINCS,E2E,FRASER,GroupBN,ICBioMark,immunaut,mlr3measures,MSiP,OUTRIDER,PatientLevelPrediction,PEAXAI,prcbench,preciseTAD,priorityelasticnet,saseR,SIAMCAT,simtrait,TSLA,usefun
Reverse suggests:BioMoR,PheVis,WeightedROC

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=PRROCto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp