Movatterモバイル変換


[0]ホーム

URL:


midasml: Estimation and Prediction Methods for High-Dimensional MixedFrequency Time Series Data

The 'midasml' package implements estimation and prediction methods for high-dimensional mixed-frequency (MIDAS) time-series and panel data regression models. The regularized MIDAS models are estimated using orthogonal (e.g. Legendre) polynomials and sparse-group LASSO (sg-LASSO) estimator. For more information on the 'midasml' approach see Babii, Ghysels, and Striaukas (2021, JBES forthcoming) <doi:10.1080/07350015.2021.1899933>. The package is equipped with the fast implementation of the sg-LASSO estimator by means of proximal block coordinate descent. High-dimensional mixed frequency time-series data can also be easily manipulated with functions provided in the package.

Version:0.1.11
Depends:Matrix, R (≥ 3.5.0)
Imports:doRNG,doParallel,foreach, graphics,randtoolbox,snow, methods,lubridate, stats
Published:2025-10-09
DOI:10.32614/CRAN.package.midasml
Author:Jonas Striaukas [cre, aut], Andrii Babii [aut], Jad Beyhum [aut], Eric Ghysels [aut], Alex Kostrov [ctb] (Contributions to analytical gradients for non-linear low-dimensional MIDAS estimation code)
Maintainer:Jonas Striaukas <jonas.striaukas at gmail.com>
BugReports:https://github.com/jstriaukas/midasml/issues
License:GPL-2 |GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation:yes
CRAN checks:midasml results

Documentation:

Reference manual:midasml.html ,midasml.pdf

Downloads:

Package source: midasml_0.1.11.tar.gz
Windows binaries: r-devel:midasml_0.1.11.zip, r-release:midasml_0.1.11.zip, r-oldrel:midasml_0.1.11.zip
macOS binaries: r-release (arm64):midasml_0.1.11.tgz, r-oldrel (arm64):midasml_0.1.11.tgz, r-release (x86_64):midasml_0.1.11.tgz, r-oldrel (x86_64):midasml_0.1.11.tgz
Old sources: midasml archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=midasmlto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp