Movatterモバイル変換


[0]ホーム

URL:


skipTrack: A Bayesian Hierarchical Model that Controls for Non-Adherence inMobile Menstrual Cycle Tracking

Implements a Bayesian hierarchical model designed to identify skips in mobile menstrual cycle self-tracking on mobile apps. Future developments will allow for the inclusion of covariates affecting cycle mean and regularity, as well as extra information regarding tracking non-adherence. Main methods to be outlined in a forthcoming paper, with alternative models from Li et al. (2022) <doi:10.1093/jamia/ocab182>.

Version:0.2.0
Imports:doParallel (≥ 1.0.0),foreach (≥ 1.5.0),genMCMCDiag (≥0.2.0),ggplot2 (≥ 3.4.0),ggtext (≥ 0.1.0),glmnet (≥4.1.0),gridExtra (≥ 2.0),LaplacesDemon (≥ 16.0.0),lifecycle,mvtnorm (≥ 1.2.0),optimg (≥ 0.1.2), parallel (≥4.0.0), stats (≥ 4.0.0), utils (≥ 4.0.0)
Suggests:knitr,rmarkdown,testthat (≥ 3.0.0)
Published:2025-09-10
DOI:10.32614/CRAN.package.skipTrack
Author:Luke DuttweilerORCID iD [aut, cre, cph]
Maintainer:Luke Duttweiler <lduttweiler at hsph.harvard.edu>
BugReports:https://github.com/LukeDuttweiler/skipTrack/issues
License:MIT + fileLICENSE
URL:https://github.com/LukeDuttweiler/skipTrack
NeedsCompilation:no
Materials:README,NEWS
CRAN checks:skipTrack results

Documentation:

Reference manual:skipTrack.html ,skipTrack.pdf
Vignettes:Getting Started with the SkipTrack Package (source,R code)

Downloads:

Package source: skipTrack_0.2.0.tar.gz
Windows binaries: r-devel:skipTrack_0.2.0.zip, r-release:skipTrack_0.2.0.zip, r-oldrel:skipTrack_0.2.0.zip
macOS binaries: r-release (arm64):skipTrack_0.2.0.tgz, r-oldrel (arm64):skipTrack_0.2.0.tgz, r-release (x86_64):skipTrack_0.2.0.tgz, r-oldrel (x86_64):skipTrack_0.2.0.tgz
Old sources: skipTrack archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=skipTrackto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp