Movatterモバイル変換


[0]ホーム

URL:


seqimpute: Imputation of Missing Data in Sequence Analysis

Multiple imputation of missing data in a dataset using MICT or MICT-timing methods. The core idea of the algorithms is to fill gaps of missing data, which is the typical form of missing data in a longitudinal setting, recursively from their edges. Prediction is based on either a multinomial or random forest regression model. Covariates and time-dependent covariates can be included in the model.

Version:2.2.0
Depends:R (≥ 3.5.0)
Imports:Amelia,cluster,dfidx,doRNG,doSNOW,dplyr,foreach, graphics,mlr,nnet, parallel,plyr,ranger,rms, stats,stringr,TraMineR,TraMineRextras, utils,mice,parallelly
Suggests:R.rsp,rmarkdown,testthat (≥ 3.0.0)
Published:2025-01-15
DOI:10.32614/CRAN.package.seqimpute
Author:Kevin Emery [aut, cre], Anthony Guinchard [aut], Andre Berchtold [aut], Kamyar Taher [aut]
Maintainer:Kevin Emery <kevin.emery at unige.ch>
BugReports:https://github.com/emerykevin/seqimpute/issues
License:GPL-2
URL:https://github.com/emerykevin/seqimpute
NeedsCompilation:no
Materials:NEWS
CRAN checks:seqimpute results

Documentation:

Reference manual:seqimpute.html ,seqimpute.pdf
Vignettes:seqimpute vignette (source)

Downloads:

Package source: seqimpute_2.2.0.tar.gz
Windows binaries: r-devel:seqimpute_2.2.0.zip, r-release:seqimpute_2.2.0.zip, r-oldrel:seqimpute_2.2.0.zip
macOS binaries: r-release (arm64):seqimpute_2.2.0.tgz, r-oldrel (arm64):seqimpute_2.2.0.tgz, r-release (x86_64):seqimpute_2.2.0.tgz, r-oldrel (x86_64):seqimpute_2.2.0.tgz
Old sources: seqimpute archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=seqimputeto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp