Movatterモバイル変換


[0]ホーム

URL:


KGode: Kernel Based Gradient Matching for Parameter Inference inOrdinary Differential Equations

The kernel ridge regression and the gradient matching algorithm proposed in Niu et al. (2016) <https://proceedings.mlr.press/v48/niu16.html> and the warping algorithm proposed in Niu et al. (2017) <doi:10.1007/s00180-017-0753-z> are implemented for parameter inference in differential equations. Four schemes are provided for improving parameter estimation in odes by using the odes regularisation and warping.

Version:1.0.5
Depends:R (≥ 3.2.0)
Imports:R6,pracma,pspline,mvtnorm, graphics
Published:2025-09-03
DOI:10.32614/CRAN.package.KGode
Author:Mu Niu [aut, cre]
Maintainer:Mu Niu <mu.niu at glasgow.ac.uk>
License:GPL-2 |GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation:no
Materials:README
CRAN checks:KGode results

Documentation:

Reference manual:KGode.html ,KGode.pdf

Downloads:

Package source: KGode_1.0.5.tar.gz
Windows binaries: r-devel:KGode_1.0.5.zip, r-release:KGode_1.0.5.zip, r-oldrel:KGode_1.0.5.zip
macOS binaries: r-release (arm64):KGode_1.0.5.tgz, r-oldrel (arm64):KGode_1.0.5.tgz, r-release (x86_64):KGode_1.0.5.tgz, r-oldrel (x86_64):KGode_1.0.5.tgz
Old sources: KGode archive

Reverse dependencies:

Reverse imports:shinyKGode

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=KGodeto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp