Movatterモバイル変換


[0]ホーム

URL:


SSLfmm: Semi-Supervised Learning under a Mixed-Missingness Mechanism inFinite Mixture Models

Implements a semi-supervised learning framework for finite mixture models under a mixed-missingness mechanism. The approach models both missing completely at random (MCAR) and entropy-based missing at random (MAR) processes using a logistic–entropy formulation. Estimation is carried out via an Expectation–-Conditional Maximisation (ECM) algorithm with robust initialisation routines for stable convergence. The methodology relates to the statistical perspective and informative missingness behaviour discussed in Ahfock and McLachlan (2020) <doi:10.1007/s11222-020-09971-5> and Ahfock and McLachlan (2023) <doi:10.1016/j.ecosta.2022.03.007>. The package provides functions for data simulation, model estimation, prediction, and theoretical Bayes error evaluation for analysing partially labelled data under a mixed-missingness mechanism.

Version:0.1.0
Depends:R (≥ 4.2.0)
Imports:stats,mvtnorm,matrixStats
Published:2025-12-09
DOI:10.32614/CRAN.package.SSLfmm
Author:Jinran WuORCID iD [aut, cre], Geoffrey J. McLachlanORCID iD [aut]
Maintainer:Jinran Wu <jinran.wu at uq.edu.au>
License:GPL-3
NeedsCompilation:no
CRAN checks:SSLfmm results

Documentation:

Reference manual:SSLfmm.html ,SSLfmm.pdf

Downloads:

Package source: SSLfmm_0.1.0.tar.gz
Windows binaries: r-devel:SSLfmm_0.1.0.zip, r-release:SSLfmm_0.1.0.zip, r-oldrel:SSLfmm_0.1.0.zip
macOS binaries: r-release (arm64):SSLfmm_0.1.0.tgz, r-oldrel (arm64):SSLfmm_0.1.0.tgz, r-release (x86_64):SSLfmm_0.1.0.tgz, r-oldrel (x86_64):SSLfmm_0.1.0.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=SSLfmmto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp