Movatterモバイル変換


[0]ホーム

URL:


binaryRL: Reinforcement Learning Tools for Two-Alternative Forced ChoiceTasks

Tools for building Rescorla-Wagner Models for Two-Alternative Forced Choice tasks, commonly employed in psychological research. Most concepts and ideas within this R package are referenced from Sutton and Barto (2018) <ISBN:9780262039246>. The package allows for the intuitive definition of RL models using simple if-else statements and three basic models built into this R package are referenced from Niv et al. (2012)<doi:10.1523/JNEUROSCI.5498-10.2012>. Our approach to constructing and evaluating these computational models is informed by the guidelines proposed in Wilson & Collins (2019) <doi:10.7554/eLife.49547>. Example datasets included with the package are sourced from the work of Mason et al. (2024) <doi:10.3758/s13423-023-02415-x>.

Version:0.9.8
Depends:R (≥ 4.0.0)
Imports:Rcpp, compiler,future,doFuture,foreach,doRNG,progressr
LinkingTo:Rcpp
Suggests:stats,GenSA,GA,DEoptim,pso,mlrMBO,mlr,ParamHelpers,smoof,lhs,DiceKriging,rgenoud,cmaes,nloptr
Published:2025-10-28
DOI:10.32614/CRAN.package.binaryRL
Author:YuKiORCID iD [aut, cre]
Maintainer:YuKi <hmz1969a at gmail.com>
BugReports:https://github.com/yuki-961004/binaryRL/issues
License:GPL-3
URL:https://yuki-961004.github.io/binaryRL/
NeedsCompilation:yes
CRAN checks:binaryRL results

Documentation:

Reference manual:binaryRL.html ,binaryRL.pdf

Downloads:

Package source: binaryRL_0.9.8.tar.gz
Windows binaries: r-devel:binaryRL_0.9.8.zip, r-release:binaryRL_0.9.8.zip, r-oldrel:binaryRL_0.9.8.zip
macOS binaries: r-release (arm64):binaryRL_0.9.8.tgz, r-oldrel (arm64):binaryRL_0.9.8.tgz, r-release (x86_64):binaryRL_0.9.8.tgz, r-oldrel (x86_64):binaryRL_0.9.8.tgz
Old sources: binaryRL archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=binaryRLto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp