Movatterモバイル変換


[0]ホーム

URL:


BMIselect: Bayesian MI-LASSO for Variable Selection on Multiply-ImputedDatasets

Provides a suite of Bayesian MI-LASSO for variable selection methods for multiply-imputed datasets. The package includes four Bayesian MI-LASSO models using shrinkage (Multi-Laplace, Horseshoe, ARD) and Spike-and-Slab (Spike-and-Laplace) priors, along with tools for model fitting via MCMC, four-step projection predictive variable selection, and hyperparameter calibration. Methods are suitable for both continuous and binary covariates under missing-at-random or missing-completely-at-random assumptions. See Zou, J., Wang, S. and Chen, Q. (2025), Bayesian MI-LASSO for Variable Selection on Multiply-Imputed Data. ArXiv, 2211.00114. <doi:10.48550/arXiv.2211.00114> for more details. We also provide the frequentist's MI-LASSO function.

Version:1.0.3
Depends:R (≥ 3.5.0)
Imports:MCMCpack,mvnfast,GIGrvg,MASS,Rfast,foreach,doParallel,arm,mice,abind,stringr, stats,posterior
Suggests:testthat,knitr,rmarkdown
Published:2025-08-25
DOI:10.32614/CRAN.package.BMIselect
Author:Jungang Zou [aut, cre], Sijian Wang [aut], Qixuan Chen [aut]
Maintainer:Jungang Zou <jungang.zou at gmail.com>
License:Apache License (≥ 2)
NeedsCompilation:no
CRAN checks:BMIselect results

Documentation:

Reference manual:BMIselect.html ,BMIselect.pdf
Vignettes:An Introduction to BMIselect (source,R code)

Downloads:

Package source: BMIselect_1.0.3.tar.gz
Windows binaries: r-devel:BMIselect_1.0.3.zip, r-release:BMIselect_1.0.3.zip, r-oldrel:BMIselect_1.0.3.zip
macOS binaries: r-release (arm64):BMIselect_1.0.3.tgz, r-oldrel (arm64):BMIselect_1.0.3.tgz, r-release (x86_64):BMIselect_1.0.3.tgz, r-oldrel (x86_64):BMIselect_1.0.3.tgz
Old sources: BMIselect archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=BMIselectto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp