It offers a wide variety of techniques, such as graphics, recoding, or regression models, for a comprehensive analysis of patient-reported outcomes (PRO). Especially novel is the broad range of regression models based on the beta-binomial distribution useful for analyzing binomial data with over-dispersion in cross-sectional, longitudinal, or multidimensional response studies (see Najera-Zuloaga J., Lee D.-J. and Arostegui I. (2019) <doi:10.1002/bimj.201700251>).
| Version: | 1.3.2 |
| Imports: | fmsb,car,RColorBrewer,matrixcalc,rootSolve,numDeriv,Matrix |
| Published: | 2025-10-29 |
| DOI: | 10.32614/CRAN.package.PROreg |
| Author: | Josu Najera-Zuloaga [aut, cre], Dae-Jin Lee [aut], Inmaculada Arostegui [aut] |
| Maintainer: | Josu Najera-Zuloaga <josu.najera at ehu.eus> |
| License: | GPL-2 |GPL-3 [expanded from: GPL] |
| NeedsCompilation: | no |
| CRAN checks: | PROreg results |
| Reference manual: | PROreg.html ,PROreg.pdf |
| Package source: | PROreg_1.3.2.tar.gz |
| Windows binaries: | r-devel:PROreg_1.3.2.zip, r-release:PROreg_1.3.2.zip, r-oldrel:PROreg_1.3.2.zip |
| macOS binaries: | r-release (arm64):PROreg_1.3.2.tgz, r-oldrel (arm64):PROreg_1.3.2.tgz, r-release (x86_64):PROreg_1.3.2.tgz, r-oldrel (x86_64):PROreg_1.3.2.tgz |
| Old sources: | PROreg archive |
| Reverse suggests: | insight,parameters |
Please use the canonical formhttps://CRAN.R-project.org/package=PROregto link to this page.