Movatterモバイル変換


[0]ホーム

URL:


PROreg: Patient Reported Outcomes Regression Analysis

It offers a wide variety of techniques, such as graphics, recoding, or regression models, for a comprehensive analysis of patient-reported outcomes (PRO). Especially novel is the broad range of regression models based on the beta-binomial distribution useful for analyzing binomial data with over-dispersion in cross-sectional, longitudinal, or multidimensional response studies (see Najera-Zuloaga J., Lee D.-J. and Arostegui I. (2019) <doi:10.1002/bimj.201700251>).

Version:1.3.2
Imports:fmsb,car,RColorBrewer,matrixcalc,rootSolve,numDeriv,Matrix
Published:2025-10-29
DOI:10.32614/CRAN.package.PROreg
Author:Josu Najera-Zuloaga [aut, cre], Dae-Jin Lee [aut], Inmaculada Arostegui [aut]
Maintainer:Josu Najera-Zuloaga <josu.najera at ehu.eus>
License:GPL-2 |GPL-3 [expanded from: GPL]
NeedsCompilation:no
CRAN checks:PROreg results

Documentation:

Reference manual:PROreg.html ,PROreg.pdf

Downloads:

Package source: PROreg_1.3.2.tar.gz
Windows binaries: r-devel:PROreg_1.3.2.zip, r-release:PROreg_1.3.2.zip, r-oldrel:PROreg_1.3.2.zip
macOS binaries: r-release (arm64):PROreg_1.3.2.tgz, r-oldrel (arm64):PROreg_1.3.2.tgz, r-release (x86_64):PROreg_1.3.2.tgz, r-oldrel (x86_64):PROreg_1.3.2.tgz
Old sources: PROreg archive

Reverse dependencies:

Reverse suggests:insight,parameters

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=PROregto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp