Movatterモバイル変換


[0]ホーム

URL:


sparseDFM: Estimate Dynamic Factor Models with Sparse Loadings

Implementation of various estimation methods for dynamic factor models (DFMs) including principal components analysis (PCA) Stock and Watson (2002) <doi:10.1198/016214502388618960>, 2Stage Giannone et al. (2008) <doi:10.1016/j.jmoneco.2008.05.010>, expectation-maximisation (EM) Banbura and Modugno (2014) <doi:10.1002/jae.2306>, and the novel EM-sparse approach for sparse DFMs Mosley et al. (2023) <doi:10.48550/arXiv.2303.11892>. Options to use classic multivariate Kalman filter and smoother (KFS) equations from Shumway and Stoffer (1982) <doi:10.1111/j.1467-9892.1982.tb00349.x> or fast univariate KFS equations from Koopman and Durbin (2000) <doi:10.1111/1467-9892.00186>, and options for independent and identically distributed (IID) white noise or auto-regressive (AR(1)) idiosyncratic errors. Algorithms coded in 'C++' and linked to R via 'RcppArmadillo'.

Version:1.0
Depends:R (≥ 3.3.0)
Imports:Rcpp (≥ 1.0.9),Matrix,ggplot2
LinkingTo:Rcpp,RcppArmadillo
Suggests:knitr,rmarkdown,gridExtra
Published:2023-03-23
DOI:10.32614/CRAN.package.sparseDFM
Author:Luke Mosley [aut], Tak-Shing Chan [aut], Alex Gibberd [aut, cre]
Maintainer:Alex Gibberd <a.gibberd at lancaster.ac.uk>
License:GPL (≥ 3)
NeedsCompilation:yes
In views:TimeSeries
CRAN checks:sparseDFM results

Documentation:

Reference manual:sparseDFM.html ,sparseDFM.pdf
Vignettes:Using sparseDFM - Nowcasting UK Trade in Goods (Exports) (source,R code)
Using sparseDFM - Inflation Example (source,R code)

Downloads:

Package source: sparseDFM_1.0.tar.gz
Windows binaries: r-devel:sparseDFM_1.0.zip, r-release:sparseDFM_1.0.zip, r-oldrel:sparseDFM_1.0.zip
macOS binaries: r-release (arm64):sparseDFM_1.0.tgz, r-oldrel (arm64):sparseDFM_1.0.tgz, r-release (x86_64):sparseDFM_1.0.tgz, r-oldrel (x86_64):sparseDFM_1.0.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=sparseDFMto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp