Movatterモバイル変換


[0]ホーム

URL:


QZ: Generalized Eigenvalues and QZ Decomposition

Generalized eigenvalues and eigenvectors use QZ decomposition (generalized Schur decomposition). The decomposition needs an N-by-N non-symmetric matrix A or paired matrices (A,B) with eigenvalues reordering mechanism. The decomposition functions are mainly based Fortran subroutines in complex*16 and double precision of LAPACK library (version 3.10.0 or later).

Version:0.2-4
Depends:R (≥ 3.6.0), methods,Matrix
Suggests:fda
Published:2025-04-13
DOI:10.32614/CRAN.package.QZ
Author:Wei-Chen Chen [aut, cre], LAPACK authors [aut, cph]
Maintainer:Wei-Chen Chen <wccsnow at gmail.com>
License:Mozilla Public License 2.0
Copyright:See QZ/inst/LAPACK_LICENSE.txt for the files in src/qz/.
NeedsCompilation:yes
Citation:QZ citation info
Materials:README,ChangeLog,INSTALL
In views:NumericalMathematics
CRAN checks:QZ results

Documentation:

Reference manual:QZ.html ,QZ.pdf
Vignettes:QZ-guide (source)

Downloads:

Package source: QZ_0.2-4.tar.gz
Windows binaries: r-devel:QZ_0.2-4.zip, r-release:QZ_0.2-4.zip, r-oldrel:QZ_0.2-4.zip
macOS binaries: r-release (arm64):QZ_0.2-4.tgz, r-oldrel (arm64):QZ_0.2-4.tgz, r-release (x86_64):QZ_0.2-4.tgz, r-oldrel (x86_64):QZ_0.2-4.tgz
Old sources: QZ archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=QZto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp