Movatterモバイル変換


[0]ホーム

URL:


glmtrans: Transfer Learning under Regularized Generalized Linear Models

We provide an efficient implementation for two-step multi-source transfer learning algorithms in high-dimensional generalized linear models (GLMs). The elastic-net penalized GLM with three popular families, including linear, logistic and Poisson regression models, can be fitted. To avoid negative transfer, a transferable source detection algorithm is proposed. We also provides visualization for the transferable source detection results. The details of methods can be found in "Tian, Y., & Feng, Y. (2023). Transfer learning under high-dimensional generalized linear models. Journal of the American Statistical Association, 118(544), 2684-2697.".

Version:2.1.0
Depends:R (≥ 3.5.0)
Imports:glmnet,ggplot2,foreach,doParallel,caret,assertthat,formatR, stats
Suggests:knitr,rmarkdown
Published:2025-03-01
DOI:10.32614/CRAN.package.glmtrans
Author:Ye Tian [aut, cre], Yang Feng [aut]
Maintainer:Ye Tian <ye.t at columbia.edu>
License:GPL-2
NeedsCompilation:no
CRAN checks:glmtrans results

Documentation:

Reference manual:glmtrans.html ,glmtrans.pdf
Vignettes:glmtrans-demo (source,R code)

Downloads:

Package source: glmtrans_2.1.0.tar.gz
Windows binaries: r-devel:glmtrans_2.1.0.zip, r-release:glmtrans_2.1.0.zip, r-oldrel:glmtrans_2.1.0.zip
macOS binaries: r-release (arm64):glmtrans_2.1.0.tgz, r-oldrel (arm64):glmtrans_2.1.0.tgz, r-release (x86_64):glmtrans_2.1.0.tgz, r-oldrel (x86_64):glmtrans_2.1.0.tgz
Old sources: glmtrans archive

Reverse dependencies:

Reverse suggests:sparselink,transreg

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=glmtransto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp