Movatterモバイル変換


[0]ホーム

URL:


AdaptGauss: Gaussian Mixture Models (GMM)

Multimodal distributions can be modelled as a mixture of components. The model is derived using the Pareto Density Estimation (PDE) for an estimation of the pdf. PDE has been designed in particular to identify groups/classes in a dataset. Precise limits for the classes can be calculated using the theorem of Bayes. Verification of the model is possible by QQ plot, Chi-squared test and Kolmogorov-Smirnov test. The package is based on the publication of Ultsch, A., Thrun, M.C., Hansen-Goos, O., Lotsch, J. (2015) <doi:10.3390/ijms161025897>.

Version:1.6
Depends:R (≥ 2.10)
Imports:Rcpp,shiny,pracma, methods,DataVisualizations,plotly
LinkingTo:Rcpp
Suggests:mclust, grid,foreach,dqrng,parallelDist,knitr (≥ 1.12),rmarkdown (≥ 0.9),reshape2,ggplot2
Published:2024-02-02
DOI:10.32614/CRAN.package.AdaptGauss
Author:Michael ThrunORCID iD [aut, cre], Onno Hansen-Goos [aut, rev], Rabea Griese [ctr, ctb], Catharina Lippmann [ctr], Florian Lerch [ctb, rev], Quirin Stier [ctb, rev], Jorn Lotsch [dtc, rev, fnd, ctb], Luca Brinkmann [ctb, rev], Alfred Ultsch [aut, cph, ths]
Maintainer:Michael Thrun <m.thrun at gmx.net>
BugReports:https://github.com/Mthrun/AdaptGauss/issues
License:GPL-3
URL:https://www.deepbionics.org
NeedsCompilation:yes
CRAN checks:AdaptGauss results

Documentation:

Reference manual:AdaptGauss.html ,AdaptGauss.pdf
Vignettes:Short Intro into Gaussian Mixture Models (source,R code)

Downloads:

Package source: AdaptGauss_1.6.tar.gz
Windows binaries: r-devel:AdaptGauss_1.6.zip, r-release:AdaptGauss_1.6.zip, r-oldrel:AdaptGauss_1.6.zip
macOS binaries: r-release (arm64):AdaptGauss_1.6.tgz, r-oldrel (arm64):AdaptGauss_1.6.tgz, r-release (x86_64):AdaptGauss_1.6.tgz, r-oldrel (x86_64):AdaptGauss_1.6.tgz
Old sources: AdaptGauss archive

Reverse dependencies:

Reverse imports:DistributionOptimization,opGMMassessment,scapGNN,Umatrix

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=AdaptGaussto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp