Movatterモバイル変換
[0]ホーム
stpp Documentation
Space-Time Point Pattern Simulation, Visualisationand Analysis
Edith Gabriel, Peter J Diggle, Barry Rowlingson andFrancisco J Rodriguez-Cortes
2024-06-27
Many of the models encountered in applications of point processmethods to the study of spatio-temporal phenomena are covered in ‘stpp’.This package provides statistical tools for analyzing the global andlocal second-order properties of spatio-temporal point processes,including estimators of the space-time inhomogeneous K-function and paircorrelation function among others. It also includes tools to get staticand dynamic display of spatio-temporal point patterns.
References
Baddeley,A., Rubak, E., Turner, R. (2015). Spatial Point Patterns: Methodologyand Applications with R. CRC Press, Boca Raton.
Chan,G. and Wood A. (1997). An algorithm for simulating stationary Gaussianrandom fields.Applied Statistics, Algorithm Section,46, 171–181.
Chan,G. and Wood A. (1999). Simulation of stationary Gaussian vector fields.Statistics and Computing,9,265–268.
DiggleP. , Chedwynd A., Haggkvist R. and Morris S. (1995). Second-orderanalysis of space-time clustering.Statistical Methods in MedicalResearch,4, 124–136.
Diggle,P.J., 2013. Statistical Analysis of Spatial and Spatio-Temporal PointPatterns. CRC Press, Boca Raton.
GabrielE., Rowlingson B., Diggle P. (2013). stpp: an R package for plotting,simulating and analyzing Spatio-Temporal Point Patterns.Journal ofStatistical Software,53(2), 1-29.
GabrielE., Diggle P. (2009). Second-order analysis of inhomogeneousspatio-temporal point process data.Statistica Neerlandica,63, 43–51.
GabrielE. (2014). Estimating second-order characteristics of inhomogeneousspatio-temporal point processes: influence ofedge correction methods andintensity estimates.Methodology and computing in AppliedProbabillity,16(2), 411–431.
GneitingT. (2002). Nonseparable, stationary covariance functions for space-timedata.Journal of the American Statistical Association,97, 590–600.
Gonzalez,J. A., Rodriguez-Cortes, F. J., Cronie, O. and Mateu, J. (2016).Spatio-temporal point process statistics: a review.SpatialStatiscts,18, 505–544.
Siino,M., Rodriguez-Cortes, F. J., Mateu, J. and Adelfio, G. (2017). Testingfor local structure in spatio-temporal point pattern data.Environmetrics. DOI: 10.1002/env.2463.
Stoyan,D., Rodriguez-Cortes, F. J., Mateu, J., and Gille, W. (2017). Markvariograms for spatio-temporal point processes.SpatialStatistics.20, 125-147.
[8]ページ先頭