Movatterモバイル変換


[0]ホーム

URL:


ppls: Penalized Partial Least Squares

Linear and nonlinear regression methods based on Partial Least Squares and Penalization Techniques. Model parameters are selected via cross-validation, and confidence intervals ans tests for the regression coefficients can be conducted via jackknifing. The method is described and applied to simulated and experimental data in Kraemer et al. (2008) <doi:10.1016/j.chemolab.2008.06.009>.

Version:2.0.0
Depends:R (≥ 3.5.0)
Imports:splines,MASS
Published:2025-07-22
DOI:10.32614/CRAN.package.ppls
Author:Nicole Kraemer [aut], Anne-Laure Boulesteix [aut], Vincent Guillemot [cre, aut]
Maintainer:Vincent Guillemot <vincent.guillemot at pasteur.fr>
License:GPL-2 |GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation:no
Citation:ppls citation info
Materials:README,NEWS
CRAN checks:ppls results

Documentation:

Reference manual:ppls.html ,ppls.pdf

Downloads:

Package source: ppls_2.0.0.tar.gz
Windows binaries: r-devel:ppls_2.0.0.zip, r-release:ppls_2.0.0.zip, r-oldrel:ppls_2.0.0.zip
macOS binaries: r-release (arm64):ppls_2.0.0.tgz, r-oldrel (arm64):ppls_2.0.0.tgz, r-release (x86_64):ppls_2.0.0.tgz, r-oldrel (x86_64):ppls_2.0.0.tgz
Old sources: ppls archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=pplsto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp