Movatterモバイル変換


[0]ホーム

URL:


lvmisc

R build statusCRAN statusCodecov test coverage

lvmisc is a package with miscellaneous R functions,including basic data computation/manipulation, easy plotting and toolsfor working with statistical models objects. You can learn more aboutthe methods for working with models invignette("working_with_models").

Installation

You can install the released version of lvmisc fromCRAN with:

install.packages("lvmisc")

And the development version fromGitHub with:

# install.packages("devtools")devtools::install_github("verasls/lvmisc")

Getting started

Some of what you can do with lvmisc.

library(lvmisc)library(dplyr)# Compute body mass index (BMI) and categorize itstarwars%>%select(name, birth_year, mass, height)%>%mutate(BMI =bmi(mass, height/100),BMI_category =bmi_cat(BMI)  )#> # A tibble: 87 × 6#>    name               birth_year  mass height   BMI BMI_category#>    <chr>                   <dbl> <dbl>  <int> <dbl> <fct>#>  1 Luke Skywalker           19      77    172  26.0 Overweight#>  2 C-3PO                   112      75    167  26.9 Overweight#>  3 R2-D2                    33      32     96  34.7 Obesity class I#>  4 Darth Vader              41.9   136    202  33.3 Obesity class I#>  5 Leia Organa              19      49    150  21.8 Normal weight#>  6 Owen Lars                52     120    178  37.9 Obesity class II#>  7 Beru Whitesun lars       47      75    165  27.5 Overweight#>  8 R5-D4                    NA      32     97  34.0 Obesity class I#>  9 Biggs Darklighter        24      84    183  25.1 Overweight#> 10 Obi-Wan Kenobi           57      77    182  23.2 Normal weight#> # … with 77 more rows# Divide numerical variables in quantilesdivide_by_quantile(mtcars$wt,4)#>  [1] 2 2 1 2 3 3 3 2 2 3 3 4 4 4 4 4 4 1 1 1 1 3 3 4 4 1 1 1 2 2 3 2#> Levels: 1 2 3 4# Center and scale variables by groupcenter_variable(iris$Petal.Width,by = iris$Species,scale =TRUE)#>   [1] -0.046 -0.046 -0.046 -0.046 -0.046  0.154  0.054 -0.046 -0.046 -0.146#>  [11] -0.046 -0.046 -0.146 -0.146 -0.046  0.154  0.154  0.054  0.054  0.054#>  [21] -0.046  0.154 -0.046  0.254 -0.046 -0.046  0.154 -0.046 -0.046 -0.046#>  [31] -0.046  0.154 -0.146 -0.046 -0.046 -0.046 -0.046 -0.146 -0.046 -0.046#>  [41]  0.054  0.054 -0.046  0.354  0.154  0.054 -0.046 -0.046 -0.046 -0.046#>  [51]  0.074  0.174  0.174 -0.026  0.174 -0.026  0.274 -0.326 -0.026  0.074#>  [61] -0.326  0.174 -0.326  0.074 -0.026  0.074  0.174 -0.326  0.174 -0.226#>  [71]  0.474 -0.026  0.174 -0.126 -0.026  0.074  0.074  0.374  0.174 -0.326#>  [81] -0.226 -0.326 -0.126  0.274  0.174  0.274  0.174 -0.026 -0.026 -0.026#>  [91] -0.126  0.074 -0.126 -0.326 -0.026 -0.126 -0.026 -0.026 -0.226 -0.026#> [101]  0.474 -0.126  0.074 -0.226  0.174  0.074 -0.326 -0.226 -0.226  0.474#> [111] -0.026 -0.126  0.074 -0.026  0.374  0.274 -0.226  0.174  0.274 -0.526#> [121]  0.274 -0.026 -0.026 -0.226  0.074 -0.226 -0.226 -0.226  0.074 -0.426#> [131] -0.126 -0.026  0.174 -0.526 -0.626  0.274  0.374 -0.226 -0.226  0.074#> [141]  0.374  0.274 -0.126  0.274  0.474  0.274 -0.126 -0.026  0.274 -0.226# Quick and easy plotting with {ggplot}plot_scatter(mtcars, disp, mpg,color =factor(cyl))

# Work with statistical model objectsm<-lm(disp~ mpg+ hp+ cyl+ mpg:cyl, mtcars)accuracy(m)#>      AIC    BIC   R2 R2_adj  MAE   MAPE  RMSE#> 1 344.64 353.43 0.87   0.85 34.9 15.73% 43.75plot_model(m)


[8]ページ先頭

©2009-2025 Movatter.jp