Movatterモバイル変換


[0]ホーム

URL:


survML: Tools for Flexible Survival Analysis Using Machine Learning

Statistical tools for analyzing time-to-event data using machine learning. Implements survival stacking for conditional survival estimation, standardized survival function estimation for current status data, and methods for algorithm-agnostic variable importance. See Wolock CJ, Gilbert PB, Simon N, and Carone M (2024) <doi:10.1080/10618600.2024.2304070>.

Version:1.2.0
Depends:SuperLearner (≥ 2.0.28)
Imports:Iso (≥ 0.0.18.1),haldensify (≥ 0.2.3),fdrtool (≥ 1.2.17),ChernoffDist (≥ 0.1.0),dplyr (≥ 1.0.10),gtools (≥ 3.9.5),mboost (≥ 2.9.0),survival (≥ 3.5.0), stats (≥ 4.3.2), methods (≥ 4.3.2)
Suggests:knitr,rmarkdown,testthat (≥ 3.0.0),ggplot2 (≥ 3.4.0),gam (≥ 1.22.0)
Published:2024-10-31
DOI:10.32614/CRAN.package.survML
Author:Charles WolockORCID iD [aut, cre, cph], Avi KennyORCID iD [ctb]
Maintainer:Charles Wolock <cwolock at gmail.com>
BugReports:https://github.com/cwolock/survML/issues
License:GPL (≥ 3)
URL:https://github.com/cwolock/survML,https://cwolock.github.io/survML/
NeedsCompilation:no
Materials:README,NEWS
CRAN checks:survML results

Documentation:

Reference manual:survML.html ,survML.pdf
Vignettes:Estimating a conditional survival function using off-the-shelf machine learning tools (source,R code)
Estimating a covariate-adjusted survival function using current status data (source,R code)
Assessing variable importance in survival analysis using machine learning (source,R code)

Downloads:

Package source: survML_1.2.0.tar.gz
Windows binaries: r-devel:survML_1.2.0.zip, r-release:survML_1.2.0.zip, r-oldrel:survML_1.2.0.zip
macOS binaries: r-release (arm64):survML_1.2.0.tgz, r-oldrel (arm64):survML_1.2.0.tgz, r-release (x86_64):survML_1.2.0.tgz, r-oldrel (x86_64):survML_1.2.0.tgz
Old sources: survML archive

Reverse dependencies:

Reverse imports:vaccine

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=survMLto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp