GenericML: Generic Machine Learning Inference
Generic Machine Learning Inference on heterogeneous treatment effects in randomized experiments as proposed in Chernozhukov, Demirer, Duflo and Fernández-Val (2020) <doi:10.48550/arXiv.1712.04802>. This package's workhorse is the 'mlr3' framework of Lang et al. (2019) <doi:10.21105/joss.01903>, which enables the specification of a wide variety of machine learners. The main functionality, GenericML(), runs Algorithm 1 in Chernozhukov, Demirer, Duflo and Fernández-Val (2020) <doi:10.48550/arXiv.1712.04802> for a suite of user-specified machine learners. All steps in the algorithm are customizable via setup functions. Methods for printing and plotting are available for objects returned by GenericML(). Parallel computing is supported.
| Version: | 0.2.2 |
| Depends: | ggplot2,mlr3,mlr3learners |
| Imports: | sandwich,lmtest,splitstackshape, stats, parallel,abind |
| Suggests: | glmnet,ranger,rpart,e1071,xgboost,kknn,DiceKriging,testthat (≥ 3.0.0) |
| Published: | 2022-06-18 |
| DOI: | 10.32614/CRAN.package.GenericML |
| Author: | Max Welz [aut, cre], Andreas Alfons [aut], Mert Demirer [aut], Victor Chernozhukov [aut] |
| Maintainer: | Max Welz <welz at ese.eur.nl> |
| BugReports: | https://github.com/mwelz/GenericML/issues/ |
| License: | GPL (≥ 3) |
| URL: | https://github.com/mwelz/GenericML/ |
| NeedsCompilation: | no |
| Citation: | GenericML citation info |
| Materials: | NEWS |
| CRAN checks: | GenericML results |
Documentation:
Downloads:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=GenericMLto link to this page.