Movatterモバイル変換


[0]ホーム

URL:


Type:Package
Title:Empirical Extrapolation of Time Feature Patterns
Version:1.2.3
Description:An application for the empirical extrapolation of time features selecting and summarizing the most relevant patterns in time sequences.
License:GPL-3
Encoding:UTF-8
LazyData:true
RoxygenNote:7.2.3
Depends:R (≥ 4.1)
Imports:purrr (≥ 1.0.1), ggplot2 (≥ 3.4.2), readr (≥ 2.1.4),lubridate (≥ 1.9.2), imputeTS (≥ 3.3), fANCOVA (≥ 0.6-1),scales (≥ 1.2.1), tictoc (≥ 1.2), modeest (≥ 2.4.0), moments(≥ 0.14.1), greybox (≥ 1.0.8), Rfast (≥ 2.0.7), fastDummies(≥ 1.6.3), entropy (≥ 1.3.1), philentropy (≥ 0.7.0)
URL:https://rpubs.com/giancarlo_vercellino/naive
NeedsCompilation:no
Packaged:2023-06-20 14:11:14 UTC; gianc
Author:Giancarlo Vercellino [aut, cre, cph]
Maintainer:Giancarlo Vercellino <giancarlo.vercellino@gmail.com>
Repository:CRAN
Date/Publication:2023-06-20 14:30:04 UTC

naive

Description

Empirical Extrapolation of Time Feature Pattern

Usage

naive(  df,  seq_len = NULL,  ci = 0.8,  smoother = FALSE,  cover = NULL,  stride = NULL,  method = NULL,  location = NULL,  n_windows = 10,  n_samp = 30,  dates = NULL,  error_scale = "naive",  error_benchmark = "naive",  seed = 42)

Arguments

df

A data frame with time features on columns (all numerics or all categories, but not both). In case of missing values, automatic missing imputation through kalman filter will be performed.

seq_len

Positive integer. Time-step number of the forecasting sequence. Default: NULL (random selection within boundaries).

ci

Confidence interval for prediction. Default: 0.8

smoother

Logical. Flag to TRUE for loess smoothing (only for numeric series). Default: FALSE.

cover

Positive numeric. The quantile cover around the location parameter (between 0 and 1). Default: NULL (random selection within boundaries).

stride

Positive integer. Shift between subsequent sequences. Default: NULL (random selection within boundaries).

method

String. Distance method using during the comparison of time sequences. Possible options are: "euclidean", "manhattan", "minkowski". Default: NULL (random selection).

location

String. Statistic used to center the cover parameter. Possible options are: "mean", "mode" (parzen method), "median". Default: NULL (random selection).

n_windows

Positive integer. Number of validation windows to test prediction error. Default: 10.

n_samp

Positive integer. Number of sample selected during random search. Default: 30.

dates

Date. Vector with dates for time features.

error_scale

String. Scale for the scaled error metrics. Two options: "naive" (average of naive one-step absolute error for the historical series) or "deviation" (standard error of the historical series). Default: "naive".

error_benchmark

String. Benchmark for the relative error metrics. Two options: "naive" (sequential extension of last value) or "average" (mean value of true sequence). Default: "naive".

seed

Positive integer. Random seed. Default: 42.

Value

This function returns a list including:

Author(s)

Giancarlo Vercellinogiancarlo.vercellino@gmail.com

Maintainer: Giancarlo Vercellinogiancarlo.vercellino@gmail.com [copyright holder]

See Also

Useful links:

Examples

{naive(time_features[, 2:3, drop = FALSE], seq_len = 30, n_samp = 1, n_windows = 5)}

time features example: IBM, AAPL, AMZN, GOOGL and MSFT Close Prices

Description

A data frame with with daily with daily prices for some Big Tech Companies since March 2017.

Usage

time_features

Format

A data frame with 6 columns and 1336 rows.

Source

finance.yahoo.com


[8]ページ先頭

©2009-2025 Movatter.jp