Movatterモバイル変換


[0]ホーム

URL:


ConSciRConSciR website

ConSciR provides tools for the analysis of culturalheritage preventive conservation data.

It includes functions for environmental data analysis, humiditycalculations, sustainability metrics, conservation risks, and datavisualisations such as psychrometric charts. It is designed to supportconservators, scientists, and engineers by streamlining commoncalculations and tasks encountered in heritage conservation workflows.The package is motivated by the framework outlined in Cosaert andBeltran et al. (2022) “Tools for the Analysis of CollectionEnvironments”“Tools for the Analysis of CollectionEnvironments”.

ConSciR is intended for:
- Conservators working in museums, galleries, and heritage sites
- Conservation scientists, engineers, and researchers
- Data scientists developing applications for conservation
- Cultural heritage professionals involved in preventiveconservation
- Students and educators in conservation and heritage scienceprogrammes

The package is also designed to be:
-FAIR: Findable, Accessible, Interoperable, andReusable
-Collaborative: enabling contributions, featurerequests, bug reports, and additions from the wider community

If using R for the first time, read an article here:UsingR for the first time

Tools

Install and load

install.packages("ConSciR")library(ConSciR)

You can install the development version of the package from GitHubusing thepak package:

install.packages("pak")pak::pak("BhavShah01/ConSciR")# Alternatively# install.packages("devtools")# devtools::install_github("BhavShah01/ConSciR")

For full details on all functions, see the packageReferencemanual.

Examples

This section demonstrates some common tasks you can perform with theConSciR package.

library(ConSciR)library(dplyr)library(ggplot2)
# My TRH datafilepath<-data_file_path("mydata.xlsx")mydata<- readxl::read_excel(filepath,sheet ="mydata")mydata<- mydata|>filter(Sensor=="Room 1")head(mydata)#> # A tibble: 6 × 5#>   Site   Sensor Date                 Temp    RH#>   <chr>  <chr>  <dttm>              <dbl> <dbl>#> 1 London Room 1 2024-01-01 00:00:00  21.8  36.8#> 2 London Room 1 2024-01-01 00:15:00  21.8  36.7#> 3 London Room 1 2024-01-01 00:29:59  21.8  36.6#> 4 London Room 1 2024-01-01 00:44:59  21.7  36.6#> 5 London Room 1 2024-01-01 00:59:59  21.7  36.5#> 6 London Room 1 2024-01-01 01:14:59  21.7  36.2
# Peform calculationshead(mydata)|>mutate(# Dew pointDewP =calcDP(Temp, RH),# Absolute humidityAbs =calcAH(Temp, RH),# Mould riskMould =ifelse(RH>calcMould_Zeng(Temp, RH),"Mould risk","No mould"),# Preservation Index, years to deteriorationPI =calcPI(Temp, RH),# Scenario: Humidity if the temperature was 2°C higherRH_if_2C_higher =calcRH_AH(Temp+2, Abs)    )|>glimpse()#> Rows: 6#> Columns: 10#> $ Site            <chr> "London", "London", "London", "London", "London", "Lon…#> $ Sensor          <chr> "Room 1", "Room 1", "Room 1", "Room 1", "Room 1", "Roo…#> $ Date            <dttm> 2024-01-01 00:00:00, 2024-01-01 00:15:00, 2024-01-01 …#> $ Temp            <dbl> 21.8, 21.8, 21.8, 21.7, 21.7, 21.7#> $ RH              <dbl> 36.8, 36.7, 36.6, 36.6, 36.5, 36.2#> $ DewP            <dbl> 6.383970, 6.344456, 6.304848, 6.216205, 6.176529, 6.05…#> $ Abs             <dbl> 7.052415, 7.033251, 7.014087, 6.973723, 6.954670, 6.89…#> $ Mould           <chr> "No mould", "No mould", "No mould", "No mould", "No mo…#> $ PI              <dbl> 45.25849, 45.38181, 45.50580, 46.07769, 46.20393, 46.5…#> $ RH_if_2C_higher <dbl> 32.81971, 32.73052, 32.64134, 32.63838, 32.54920, 32.2…
mydata|>mutate(DewPoint =calcDP(Temp, RH))|>graph_TRH()+geom_line(aes(Date, DewPoint),col ="cyan3")+# add dew pointtheme_bw()

graphTRH

mydata|>mutate(Mould =calcMould_Zeng(Temp, RH))|>ggplot()+geom_line(aes(Date, RH),col ="royalblue3")+geom_line(aes(Date, Mould),col ="darkorchid",size =1)+labs(title ="Mould Growth Rate Limits",subtitle ="Mould growth initiates when RH goes above threshold",x =NULL,y ="Humidity (%)")+facet_grid(~Sensor)+theme_classic(base_size =14)

mould

# Customisemydata|>graph_psychrometric(data_alpha =0.2,LowT =8,HighT =28,LowRH =30,HighRH =70,y_func = calcAH    )+theme_classic()+labs(title ="Psychrometric chart")

psych_chart


[8]ページ先頭

©2009-2025 Movatter.jp