Movatterモバイル変換


[0]ホーム

URL:


plac

R-CMD-checkCRAN status

This R package implements a semi-parametric estimation method for theCox model introduced in the paperA Pairwise LikelihoodAugmented Cox Estimator for Left-truncated data by Wu etal. (2018). It gives more efficient estimate for left-truncatedsurvival data using the marginal survival information up to the start offollow-up (when the subject enters the risk set). The independencebetween the underlying truncation time distribution and the covariatesis the only additional assumption, which holds true for mostapplications of length-biased sampling problem and beyond.

Installation

The package can be installed from CRAN:

install.packages("plac")

You can also install the development version of it fromGitHub with:

# install.packages("devtools")devtools::install_github("942kid/plac")

Example

The main wrapper functionPLAC() calls the appropriateworking function according to the covariate types in the dataset. Forexample,

library(plac)#> Loading required package: survival# When only time-invariant covariates are involveddat1<-sim.ltrc(n =50)$datPLAC(ltrc.formula =Surv(As, Ys, Ds)~ Z1+ Z2,ltrc.data = dat1,td.type ="none")#> Calling PLAC_TI()...#> 12 Iterations#> Coefficient Estimates:#>    est.Cox se.Cox p.Cox est.PLAC se.PLAC p.PLAC#> Z1   2.055  0.431 0.000    1.804   0.357  0.000#> Z2   0.919  0.347 0.008    0.804   0.259  0.002# When there is a time-dependent covariate that is independent of the truncation timedat2<-sim.ltrc(n =50,time.dep =TRUE,distr.A ="binomial",p.A =0.8,Cmax =5)$datPLAC(ltrc.formula =Surv(As, Ys, Ds)~ Z,ltrc.data = dat2,td.type ="independent",td.var ="Zv",t.jump ="zeta")#> Calling PLAC_TD()...#> 100 Iterations#>#> Coefficient Estimates:#>    est.Cox se.Cox p.Cox est.PLAC se.PLAC p.PLAC#> Z    0.866  0.330 0.009    0.795   0.224      0#> Zv   0.877  0.355 0.014    0.864   0.214      0# When there is a time-dependent covariate that depends on the truncation timedat3<-sim.ltrc(n =50,time.dep =TRUE,Zv.depA =TRUE,Cmax =5)$datPLAC(ltrc.formula =Surv(As, Ys, Ds)~ Z,ltrc.data = dat3,td.type ="post-trunc",td.var ="Zv",t.jump ="zeta")#> Calling PLAC_TDR()...#> 8 Iterations#>#> Coefficient Estimates:#>    est.Cox se.Cox p.Cox est.PLAC se.PLAC p.PLAC#> Z    0.668  0.301 0.027    0.487   0.246  0.047#> Zv   0.915  0.327 0.005    0.938   0.301  0.002

For computation details, please refer to the document of the mainwrapper function:

help(PLAC)

References

Wu, F., Kim, S., Qin, J., Saran, R., & Li, Y. (2018). A pairwiselikelihood augmented Cox estimator for left‐truncated data.Biometrics, 74(1), 100-108.


[8]ページ先頭

©2009-2025 Movatter.jp