Movatterモバイル変換


[0]ホーム

URL:


spfa: Semi-Parametric Factor Analysis

Estimation, scoring, and plotting functions for the semi-parametric factor model proposed by Liu & Wang (2022) <doi:10.1007/s11336-021-09832-8> and Liu & Wang (2023) <doi:10.48550/arXiv.2303.10079>. Both the conditional densities of observed responses given the latent factors and the joint density of latent factors are estimated non-parametrically. Functional parameters are approximated by smoothing splines, whose coefficients are estimated by penalized maximum likelihood using an expectation-maximization (EM) algorithm. E- and M-steps can be parallelized on multi-thread computing platforms that support 'OpenMP'. Both continuous and unordered categorical response variables are supported.

Version:1.0
Depends:R (≥ 2.10)
Imports:graphics,Rcpp
LinkingTo:Rcpp,RcppArmadillo
Published:2023-05-26
DOI:10.32614/CRAN.package.spfa
Author:Yang Liu [cre, aut], Weimeng Wang [aut, ctb]
Maintainer:Yang Liu <yliu87 at umd.edu>
License:MIT + fileLICENSE
NeedsCompilation:yes
Materials:README,NEWS
CRAN checks:spfa results

Documentation:

Reference manual:spfa.html ,spfa.pdf

Downloads:

Package source: spfa_1.0.tar.gz
Windows binaries: r-devel:spfa_1.0.zip, r-release:spfa_1.0.zip, r-oldrel:spfa_1.0.zip
macOS binaries: r-release (arm64):spfa_1.0.tgz, r-oldrel (arm64):spfa_1.0.tgz, r-release (x86_64):spfa_1.0.tgz, r-oldrel (x86_64):spfa_1.0.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=spfato link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp