Movatterモバイル変換


[0]ホーム

URL:


causalDT: Causal Distillation Trees

Causal Distillation Tree (CDT) is a novel machine learning method for estimating interpretable subgroups with heterogeneous treatment effects. CDT allows researchers to fit any machine learning model (or metalearner) to estimate heterogeneous treatment effects for each individual, and then "distills" these predicted heterogeneous treatment effects into interpretable subgroups by fitting an ordinary decision tree to predict the previously-estimated heterogeneous treatment effects. This package provides tools to estimate causal distillation trees (CDT), as detailed in Huang, Tang, and Kenney (2025) <doi:10.48550/arXiv.2502.07275>.

Version:1.0.0
Depends:R (≥ 4.1.0)
Imports:bcf,dplyr,ggparty,ggplot2,grf,lifecycle,partykit,purrr,R.utils,Rcpp,rlang,rpart,stringr,tibble,tidyselect
LinkingTo:Rcpp,RcppArmadillo
Suggests:testthat (≥ 3.0.0)
Published:2025-09-03
DOI:10.32614/CRAN.package.causalDT
Author:Tiffany TangORCID iD [aut, cre], Melody Huang [aut], Ana Kenney [aut]
Maintainer:Tiffany Tang <ttang4 at nd.edu>
License:MIT + fileLICENSE
URL:https://tiffanymtang.github.io/causalDT/
NeedsCompilation:yes
Materials:README
CRAN checks:causalDT results

Documentation:

Reference manual:causalDT.html ,causalDT.pdf

Downloads:

Package source: causalDT_1.0.0.tar.gz
Windows binaries: r-devel:causalDT_1.0.0.zip, r-release:causalDT_1.0.0.zip, r-oldrel:causalDT_1.0.0.zip
macOS binaries: r-release (arm64):causalDT_1.0.0.tgz, r-oldrel (arm64):causalDT_1.0.0.tgz, r-release (x86_64):causalDT_1.0.0.tgz, r-oldrel (x86_64):causalDT_1.0.0.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=causalDTto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp