Movatterモバイル変換


[0]ホーム

URL:


rQSAR: QSAR Modeling with Multiple Algorithms: MLR, PLS, and RandomForest

Quantitative Structure-Activity Relationship (QSAR) modeling is a valuable tool in computational chemistry and drug design, where it aims to predict the activity or property of chemical compounds based on their molecular structure. In this vignette, we present the 'rQSAR' package, which provides functions for variable selection and QSAR modeling using Multiple Linear Regression (MLR), Partial Least Squares (PLS), and Random Forest algorithms.

Version:1.0.0
Depends:R (≥ 3.6.0),dplyr,corrplot,tibble,gridExtra
Imports:utils,rcdk (≥ 3.8.1),ggplot2,caret,pls,randomForest,leaps, stats
Suggests:rmarkdown,knitr
Published:2024-04-02
DOI:10.32614/CRAN.package.rQSAR
Author:Oche Ambrose GeorgeORCID iD [aut, cre]
Maintainer:Oche Ambrose George <ocheab1 at gmail.com>
License:MIT + fileLICENSE
NeedsCompilation:no
CRAN checks:rQSAR results

Documentation:

Reference manual:rQSAR.html ,rQSAR.pdf
Vignettes:QSAR Workflow (source,R code)

Downloads:

Package source: rQSAR_1.0.0.tar.gz
Windows binaries: r-devel:rQSAR_1.0.0.zip, r-release:rQSAR_1.0.0.zip, r-oldrel:rQSAR_1.0.0.zip
macOS binaries: r-release (arm64):rQSAR_1.0.0.tgz, r-oldrel (arm64):rQSAR_1.0.0.tgz, r-release (x86_64):rQSAR_1.0.0.tgz, r-oldrel (x86_64):rQSAR_1.0.0.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=rQSARto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp