Movatterモバイル変換


[0]ホーム

URL:


LPRelevance: Relevance-Integrated Statistical Inference Engine

Provide methods to perform customized inference at individual level by taking contextual covariates into account. Three main functions are provided in this package: (i) LASER(): it generates specially-designed artificial relevant samples for a given case; (ii) g2l.proc(): computes customized fdr(z|x); and (iii) rEB.proc(): performs empirical Bayes inference based on LASERs. The details can be found in Mukhopadhyay, S., and Wang, K (2021, <doi:10.48550/arXiv.2004.09588>).

Version:3.3
Depends:R (≥ 4.0.3), stats,BayesGOF,MASS
Imports:leaps,locfdr,Bolstad2,reshape2,ggplot2,polynom,glmnet,caret
Published:2022-05-18
DOI:10.32614/CRAN.package.LPRelevance
Author:Subhadeep Mukhopadhyay, Kaijun Wang
Maintainer:Kaijun Wang <kaijunwang.19 at gmail.com>
License:GPL-2
NeedsCompilation:no
CRAN checks:LPRelevance results

Documentation:

Reference manual:LPRelevance.html ,LPRelevance.pdf

Downloads:

Package source: LPRelevance_3.3.tar.gz
Windows binaries: r-devel:LPRelevance_3.3.zip, r-release:LPRelevance_3.3.zip, r-oldrel:LPRelevance_3.3.zip
macOS binaries: r-release (arm64):LPRelevance_3.3.tgz, r-oldrel (arm64):LPRelevance_3.3.tgz, r-release (x86_64):LPRelevance_3.3.tgz, r-oldrel (x86_64):LPRelevance_3.3.tgz
Old sources: LPRelevance archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=LPRelevanceto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp